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FastKRR-package Kernel Ridge Regression using the RcppArmadillo Package

Description

The FastKRR implements its core computational operations in C++ via RcppArmadillo, enabling
faster performance than pure R, improved numerical stability, and parallel execution with OpenMP
where available. On systems without OpenMP support, the package automatically falls back to
single-threaded execution with no user configuration required. For efficient model selection, it in-
tegrates with CVST to provide sequential-testing cross-validation that identifies competitive hyper-
parameters without exhaustive grid search. The package offers a unified interface for exact kernel
ridge regression and three widely used scalable approximations—Nyström, Pivoted Cholesky, and
Random Fourier Features—allowing analyses with substantially larger sample sizes than are feasi-
ble with exact KRR while retaining strong predictive performance. This combination of a compiled
backend and scalable algorithms addresses limitations of packages that rely solely on exact com-
putation, which is often impractical for large n. It also integrates with the tidymodels ecosystem
via the parsnip model specification krr_reg, and the S3 method tunable.krr_reg() (exposes
tunable parameters to dials/tune); see their help pages for usage.
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Directory structure

• R/: High-level R functions and user-facing API

• src/: C++ sources (kernel computation, fitting, prediction)

This package links against Rcpp and RcppArmadillo (via LinkingTo). It uses CVST, parsnip,
and the tidymodels ecosystem through their public R APIs.

Author(s)

Maintainer: Kwan-Young Bak <kybak@sungshin.ac.kr> (ORCID) (Sungshin Women’s Univer-
sity) [copyright holder]

Authors:

• Gyeongmin Kim <rlarudals0824@gmail.com> (Sungshin Women’s University)

• Seyoung Lee <sudang0404@gmail.com> (Sungshin Women’s University)

• Miyoung Jang <miyoung9072@gmail.com> (Sungshin Women’s University)

See Also

CVST, Rcpp, RcppArmadillo, parsnip, tidymodels

approx_kernel Compute low-rank approximations(Nyström, Pivoted Cholesky, RFF)

Description

Computes low-rank kernel approximation K̃ ∈ Rn×nusing three methods: Nyström approximation,
Pivoted Cholesky decomposition, and Random Fourier Features (RFF).

Usage

approx_kernel(
K = NULL,
X = NULL,
opt = c("nystrom", "pivoted", "rff"),
kernel = c("gaussian", "laplace"),
m = NULL,
d,
rho,
eps = 1e-06,
W = NULL,
b = NULL,
n_threads = 4

)

https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=CVST
https://CRAN.R-project.org/package=parsnip
https://CRAN.R-project.org/package=tidymodels
https://orcid.org/0000-0002-4541-160X
https://CRAN.R-project.org/package=CVST
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=parsnip
https://CRAN.R-project.org/package=tidymodels
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Arguments

K Exact Kernel matrix K ∈ Rn×n. Used in "nystrom" and "pivoted".
X Design matrix X ∈ Rn×d. Only required for "rff".
opt Method for constructing or approximating :

"nystrom" Construct a low-rank approximation of the kernel matrix K ∈ Rn×n

using the Nyström approximation.
"pivoted" Construct a low-rank approximation of the kernel matrix K ∈ Rn×n

using Pivoted Cholesky decomposition.
"rff" Construct a low-rank approximation of the kernel matrix K ∈ Rn×n

using Random Fourier Features (RFF).
kernel Kernel type either "gaussian"or "laplace".
m Approximation rank (number of random features) for the low-rank kernel ap-

proximation. If not specified, the recommended choice is

⌈n · log(d+ 5)/10⌉

where X is design matrix, n = nrow(X) and d = ncol(X).
d Design matrix’s dimension (d = ncol(X)).
rho Scaling parameter of the kernel (ρ), specified by the user.
eps Tolerance parameter used only in "pivoted" for stopping criterion of the Piv-

oted Cholesky decomposition.
W Random frequency matrix ω ∈ Rm×d

b Random phase vector b ∈ Rm, i.i.d. Unif[0, 2π].
n_threads Number of parallel threads. The default is 4. If the system does not support

4 threads, it automatically falls back to 1 thread. It is applied only for opt =
"nystrom" or opt = "rff" , and for the Laplace kernel (kernel = "laplace").

Details

Requirements and what to supply:

Common

• d and rho must be provided (non-NULL).

nystrom / pivoted

• Require a precomputed kernel matrix K; error if K is NULL.
• If m is NULL, use ⌈n · log(d+ 5)/10⌉.
• For "pivoted", a tolerance eps is used; the decomposition stops early when the next pivot

(residual diagonal) drops below eps.

rff

• K must be NULL (not used) and X must be provided with d = ncol(X).
• The function automatically generates W (random frequency matrix ω ∈ Rm×d) and b (random

phase vector b ∈ Rm).
• If the user provides them manually, both W and b must be specified and their dimensions must

be compatible.
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Value

An S3 object of class "approx_kernel" containing the results of the kernel approximation:

• call: The matched function call used to create the object.
• opt: The kernel approximation method actually used ("nystrom", "pivoted", "rff").
• K_approx: n× n approximated kernel matrix.
• m: Kernel approximation degree.

Additional components depend on the value of opt:

nystrom

• n_threads: Number of threads used in the computation.

pivoted

• eps: Numerical tolerance used for early stopping in the pivoted Cholesky decomposition.

rff

• d: Input design matrix’s dimension.
• rho: Scaling parameter of the kernel.
• W: m× d Random frequency matrix.
• b: Random phase m–vector.
• used_supplied_Wb: Logical; TRUE if user-supplied W, b were used, FALSE otherwise.
• n_threads: Number of threads used in the computation.

Examples

# Data setting
set.seed(1)
d = 1
n = 1000
m = 50
X = matrix(runif(n*d, 0, 1), nrow = n, ncol = d)
y = as.vector(sin(2*pi*rowMeans(X)^3) + rnorm(n, 0, 0.1))
K = make_kernel(X, kernel = "gaussian", rho = 1)

# Example: RFF approximation
K_rff = approx_kernel(X = X, opt = "rff", kernel = "gaussian",

m = m, d = d, rho = 1,
n_threads = 1)

# Exapmle: Nystrom approximation
K_nystrom = approx_kernel(K = K, opt = "nystrom",

m = m, d = d, rho = 1,
n_threads = 1)

# Example: Pivoted Cholesky approximation
K_pivoted = approx_kernel(K = K, opt = "pivoted",

m = m, d = d, rho = 1)
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coef.krr Coef method for fitted Kernel Ridge Regression models

Description

Displays the main coefficient information from a fitted Kernel Ridge Regression (KRR) model,
including the original function call and the first few estimated coefficients. The type of coeffi-
cient reported depends on the kernel approximation method: for opt = "exact", "nystrom", or
"pivoted", the coefficients represent α; for opt = "rff", they represent the coefficient (β).

Usage

## S3 method for class 'krr'
coef(object, ...)

Arguments

object An S3 object of class krr, typically returned by fastkrr.

... Additional arguments (currently ignored).

Value

A human-readable summary of the fitted KRR model to the console.

See Also

fastkrr

Examples

# Data setting
set.seed(1)
lambda = 1e-4
d = 1
n = 50
rho = 1
X = matrix(runif(n*d, 0, 1), nrow = n, ncol = d)
y = as.vector(sin(2*pi*rowMeans(X)^3) + rnorm(n, 0, 0.1))

# Example: exact
model = fastkrr(X, y,

kernel = "gaussian", opt = "exact",
rho = rho, lambda = 1e-4)

class(model)

coef(model)
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error Compute Model Error (Generic)

Description

Generic function for computing model error.

Usage

error(x, ...)

## Default S3 method:
error(x, ...)

Arguments

x An object to compute model error for.
... Additional arguments passed to methods.

Value

A numeric value or class-specific result.

error.krr Compute Model Error for Kernel Ridge Regression Models

Description

Computes the model error for kernel ridge regression ("krr") objects. Returns the mean squared
error (MSE) between the observed responses and the fitted values stored in the object.

Usage

## S3 method for class 'krr'
error(x, ...)

Arguments

x An object of class "krr", typically returned by fastkrr.
... Additional arguments (ignored).

Details

This method computes:

MSE =
1

n

∑
i

(yi − ŷi)
2

where y and fitted.values are stored in the "krr" object attributes.
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Value

A numeric value giving the mean squared error (MSE).

See Also

summary.krr, plot.krr, predict.krr

Examples

# Data setting
set.seed(1)
lambda = 1e-4
d = 1
n = 50
rho = 1
X = matrix(runif(n*d, 0, 1), nrow = n, ncol = d)
y = as.vector(sin(2*pi*rowMeans(X)^3) + rnorm(n, 0, 0.1))

model = fastkrr(X, y, kernel = "gaussian", lambda = 0.001)
error(model)

fastkrr Fit kernel ridge regression using exact or approximate methods

Description

This function performs kernel ridge regression (KRR) in high-dimensional settings. The regulariza-
tion parameter λ can be selected via the CVST (Cross-Validation via Sequential Testing) procedure.
For scalability, three different kernel approximation strategies are supported (Nyström approxima-
tion, Pivoted Cholesky decomposition, Random Fourier Features(RFF)), and kernel matrix can be
computed using two methods(Gaussian kernel, Laplace kerenl).

Usage

fastkrr(
x,
y,
kernel = "gaussian",
opt = "exact",
m = NULL,
eps = 1e-06,
rho = 1,
lambda = NULL,
fastcv = FALSE,
n_threads = 4,
verbose = TRUE

)
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Arguments

x Design matrix X ∈ Rn×d.

y Response variable y ∈ Rn.

kernel Kernel type either "gaussian"or "laplace".

opt Method for constructing or approximating :

"exact" Construct the full kernel matrix K ∈ Rn×n using design martix X .
"nystrom" Construct a low-rank approximation of the kernel matrix K ∈ Rn×n

using the Nyström approximation.
"pivoted" Construct a low-rank approximation of the kernel matrix K ∈ Rn×n

using Pivoted Cholesky decomposition.
"rff" Use Random Fourier Features to construct a feature map Z ∈ Rn×m

(with m random features) so that K ≈ ZZ⊤. Here, m is the number of
features.

m Approximation rank(number of random features) used for the low-rank kernel
approximation. If not provided by the user, it defaults to

⌈n · log(d+ 5)

10
⌉,

where n = nrow(X) and d = ncol(X).

eps Tolerance parameter used only in "pivoted" for stopping criterion of the Piv-
oted Cholesky decomposition.

rho Scaling parameter of the kernel(ρ), specified by the user. Defaults to 1.

Gaussian kernel : K(x, x′) = exp(−ρ∥x− x′∥22)

Laplace kernel : K(x, x′) = exp(−ρ∥x− x′∥1)

lambda Regularization parameter. If NULL, the penalty parameter is chosen automati-
cally via CVST package. If not provided, the argument is set to a kernel-specific
grid of 100 values: [10−10, 10−3] for Gaussian, [10−5, 10−2] for Laplace.

fastcv If TRUE, accelerated cross-validation is performed via sequential testing (early
stopping) as implemented in the CVST package. The default is FALSE.

n_threads Number of parallel threads. The default is 4. If the system does not support 4
threads, it automatically falls back to 1 thread. Parallelization (implemented in
C++) is one of the main advantages of this package and is applied only for opt =
"nystrom" or opt = "rff", and for the Laplace kernel (kernel = "laplace").

verbose If TRUE, detailed progress and cross-validation results are printed to the con-
sole. If FALSE, suppresses intermediate output and only returns the final result.

Details

The function performs several input checks and automatic adjustments:

• If x is a vector, it is converted to a one column matrix. Otherwise, x must be a matrix;
otherwise an error is thrown.
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• y must be a vector, and its length must match nrow(x).

• kernel must be either gaussian or laplace.

• opt must be one of "exact", "pivoted", "nystrom", or "rff".

• If m is NULL, it defaults to
⌈n · log(d+ 5)/10⌉

where n = nrow(X) and d = ncol(X). Otherwise, m must be a positive integer.

• rho must be a positive real number (default is 1).

• lambda can be specified in three ways:

1. A positive numeric scalar, in which case the model is fitted with this single value.
2. A numeric vector (length >= 3) of positive values used as a tuning grid; selection is

performed by CVST cross-validation (sequential testing if fastcv = TRUE).
3. NULL: use a default grid (internal setting) and tune lambda via CVST cross-validation

(sequential testing if fastcv = TRUE).

• n_threads: Number of threads for parallel computation. Default is 4. If the system has <= 3
available processors, it uses 1.

Value

An S3 object of class "fastkrr", which is a list containing the results of the fitted Kernel Ridge
Regression model.

• coefficients: Estimated coefficient vector Rn. Accessible via model$coefficients.

• fitted.values: Fitted values Rn. Accessible via model$fitted.values.

• opt: Kernel approximation option. One of "exact", "pivoted", "nystrom", "rff".

• kernel: Kernel used ("gaussian" or "laplace").

• x: Input design matrix.

• y: Response vector.

• lambda: Regularization parameter. If NULL, tuned by cross-validation via CVST.

• rho: Additional user-specified hyperparameter.

• n_threads: Number of threads used for parallelization.

Additional components depend on the value of opt:

opt = “exact”:
• K: The full kernel matrix.

opt = “nystrom”:
• K: Exact kernel matrix K ∈ Rn×n.
• m: Kernel approximation degree.
• R: The method provides a low-rank approximation to the kernel matrix R ∈ Rn×m obtained

via Nyström approximation; satisfies K ≈ RR⊤.

opt = “pivoted”:
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• K: Exact kernel matrix K ∈ Rn×n.
• m: Kernel pproximation degree.
• PR: The method provides a low-rank approximation to the kernel matrix PR ∈ Rn×m ob-

tained via Pivoted Cholesky decomposition; satisfies K ≈ PR (PR)⊤.
• eps: Numerical tolerance used for early stopping in the pivoted Cholesky decomposition.

opt = “rff”:
• m: Number of random features.
• Z: Random Fourier Feature matrix Z ∈ Rn×m with Zij = zj(xi) =

√
2/m cos(ω⊤

j xi +

bj), j = 1, · · · ,m, so that K ≈ ZZ⊤.
• W: Random frequency matrix ω ∈ Rm×d (row j is ω⊤

j ∈ Rd), drawn i.i.d. from the spectral
density of the chosen kernel:

– Gaussian: ωjk ∼ N (0, 2γ) (e.g., γ = 1/ℓ2).
– Laplace: ωjk ∼ Cauchy(0, 1/σ) i.i.d.

• b Random phase vector b ∈ Rm, i.i.d. Unif[0, 2π].

Examples

# Data setting
set.seed(1)
lambda = 1e-4
d = 1
rho = 1
n = 50
X = matrix(runif(n*d, 0, 1), nrow = n, ncol = d)
y = as.vector(sin(2*pi*rowMeans(X)^3) + rnorm(n, 0, 0.1))

# Exapmle: pivoted cholesky
model = fastkrr(X, y, kernel = "gaussian", opt = "pivoted", rho = rho, lambda = 1e-4)

# Example: nystrom
model = fastkrr(X, y, kernel = "gaussian", opt = "nystrom", rho = rho, lambda = 1e-4)

# Example: random fourier features
model = fastkrr(X, y, kernel = "gaussian", opt = "rff", rho = rho, lambda = 1e-4)

# Example: Laplace kernel
model = fastkrr(X, y, kernel = "laplace", opt = "nystrom", n_threads = 1, rho = rho)

krr_reg Kernel Ridge Regression

Description

Defines a Kernel Ridge Regression model specification for use with the tidymodels ecosystem via
parsnip. This spec can be paired with the "fastkrr" engine implemented in this package to
fit exact or kernel approximation (Nyström, Pivoted Cholesky, Random Fourier Features) within
recipes/workflows pipelines.
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Usage

krr_reg(
mode = "regression",
kernel = NULL,
opt = NULL,
eps = NULL,
n_threads = NULL,
m = NULL,
rho = NULL,
penalty = NULL,
fastcv = NULL

)

Arguments

mode A single string; only ‘"regression"‘ is supported.

kernel Kernel matrix K has two kinds of Kernel ("gaussian", "laplace").

opt Method for constructing or approximating :

"exact" Construct the full kernel matrix K ∈ Rn×n using design matrix X .
"nystrom" Construct a low-rank approximation of the kernel matrix K ∈ Rn×n

using the Nyström approximation.
"pivoted" Construct a low-rank approximation of the kernel matrix K ∈ Rn×n

using Pivoted Cholesky decomposition.
"rff" Use Random Fourier Features to construct a feature map Z ∈ Rn×m

(with m random features) so that K ≈ ZZ⊤. Here, m is the number of
features.

eps Tolerance parameter used only in "pivoted" for stopping criterion of the Piv-
oted Cholesky decomposition.

n_threads Number of parallel threads. It is applied only for opt = "nystrom" or opt =
"rff", and for the Laplace kernel (kernel = "laplace").

m Approximation rank(number of random features) used for the low-rank kernel
approximation.

rho Scaling parameter of the kernel(ρ).

penalty Regularization parameter.

fastcv If TRUE, accelerated cross-validation is performed via sequential testing (early
stopping) as implemented in the CVST package.

Value

A parsnip model specification of class "krr_reg".

Examples

if (all(vapply(
c("parsnip","stats","modeldata"),
requireNamespace, quietly = TRUE, FUN.VALUE = logical(1)
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))) {
library(tidymodels)
library(parsnip)
library(stats)
library(modeldata)

# Data analysis
data(ames)
ames = ames %>% mutate(Sale_Price = log10(Sale_Price))

set.seed(502)
ames_split = initial_split(ames, prop = 0.80, strata = Sale_Price)
ames_train = training(ames_split) # dim (2342, 74)
ames_test = testing(ames_split) # dim (588, 74)

# Model spec
krr_spec = krr_reg(kernel = "gaussian", opt = "exact",

m = 50, eps = 1e-6, n_threads = 4,
rho = 1, penalty = tune()) %>%

set_engine("fastkrr") %>%
set_mode("regression")

# Define rec
rec = recipe(Sale_Price ~ Longitude + Latitude, data = ames_train)

# workflow
wf = workflow() %>%

add_recipe(rec) %>%
add_model(krr_spec)

# Define hyper-parameter grid
param_grid = grid_regular(

dials::penalty(range = c(-10, -3)),
levels = 5

)

# CV setting
set.seed(123)
cv_folds = vfold_cv(ames_train, v = 5, strata = Sale_Price)

# Tuning
tune_results = tune_grid(

wf,
resamples = cv_folds,
grid = param_grid,
metrics = metric_set(rmse),
control = control_grid(verbose = TRUE, save_pred = TRUE)

)

# Result check
collect_metrics(tune_results)

# Select best parameter
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best_params = select_best(tune_results, metric = "rmse")

# Finalized model spec using best parameter
final_spec = finalize_model(krr_spec, best_params)
final_wf = workflow() %>%

add_recipe(rec) %>%
add_model(final_spec)

# Finalized fitting using best parameter
final_fit = final_wf %>% fit(data = ames_train)

# Prediction
predict(final_fit, new_data = ames_test)
print(best_params)

}

make_kernel Kernel matrix K construction for given datasets

Description

Constructs a kernel matrix K ∈ Rn×n′
given two datasets X ∈ Rn×d and X ′ ∈ Rn′×d, where

xi ∈ Rd and x′
j ∈ Rd denote the i-th and j-th rows of X and X ′, respectively, and Kij = K(xi, x

′
j)

for a user-specified kernel. Implemented in C++ via RcppArmadillo.

Arguments

X Design matrix X ∈ Rn×d (rows xi ∈ Rd).

X_new Second matrix X ′ ∈ Rn′×d (rows x′
j ∈ Rd). If omitted, X ′ = X and n′ = n.

kernel Kernel type; one of "gaussian" or "laplace".

rho Kernel width parameter (ρ > 0).

n_threads Number of parallel threads. The default is 4. If the system does not support
4 threads, it automatically falls back to 1 thread. Parallelization (implemented
in C++) is one of the main advantages of this package and is applied only for
"laplace" kernels.

Details

Gaussian:
K(xi, xj) = exp

(
− ρ∥xi − xj∥22

)
Laplace:

K(xi, xj) = exp
(
− ρ∥xi − xj∥1

)
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Value

An S3 object of class "kernel_matrix" that represents the computed kernel matrix. If X_new is
NULL, the result is a symmetric matrix Kij = K(xi, xj), with K ∈ Rn×n. Otherwise, the result is
a rectangular matrix K ′

ij = K(xi, x
′
j), with K ′ ∈ Rn×n′

.

Examples

# Data setting
set.seed(1)
d = 1
rho = 1
n = 1000
X = matrix(runif(n*d, 0, 1), nrow = n, ncol = d)

# New design matrix
new_n = 1500
new_X = matrix(runif(new_n*d, 0, 1), nrow = new_n, ncol = d)

# Make kernel : Gaussian kernel
K = make_kernel(X, kernel = "gaussian", rho = rho) ## symmetric matrix
new_K = make_kernel(X, new_X, kernel = "gaussian", rho = rho) ## rectangular matrix

# Make kernel : Laplace kernel
K = make_kernel(X, kernel = "laplace", rho = rho, n_threads = 1) ## symmetric matrix
new_K = make_kernel(X, new_X, kernel = "laplace", rho = rho, n_threads = 1) ## rectangular matrix

param Extract/print hyperparameters of fitted models

Description

"param()" is a generic S3 function that displays (and invisibly returns) model hyperparameters.
Methods are provided for "krr" objects.

Usage

param(x, ...)

## Default S3 method:
param(x, ...)

Arguments

x An object.

... Additional arguments passed to methods.
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Value

A named list of hyperparameters (invisibly); may print side effects.

param.krr Param method for fitted Kernel Ridge Regression models

Description

Displays (and invisibly returns) the hyperparameters actually used by a fitted object. For krr ob-
jects returned by fastkrr, this prints a concise hyperparameter panel (e.g., rho, lambda, m, eps,
n_threads, d).

Usage

## S3 method for class 'krr'
param(x, ...)

Arguments

x An object of class "krr", typically returned by fastkrr.

... Additional arguments.

Details

Pivoted approximation note: When opt = "pivoted", the effective number of pivots m used dur-
ing the approximation may be smaller than the user-specified m because the algorithm can stop
early based on eps. If you want to confirm the initial m that you set, please see the printed Call (the
original function call shows your input arguments).

Value

Prints a human-readable panel and returns (invisibly) a named list of hyperparameters.

See Also

fastkrr

Examples

# Data setting
set.seed(1)
lambda = 1e-4
d = 1
n = 50
rho = 1
X = matrix(runif(n*d, 0, 1), nrow = n, ncol = d)
y = as.vector(sin(2*pi*rowMeans(X)^3) + rnorm(n, 0, 0.1))
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model = fastkrr(X, y, kernel="gaussian", opt="nystrom",
rho=1, lambda=1e-4, m=200, n_threads=4, fastcv=FALSE)

class(model)
param(model)

plot.krr Plot method for fitted Kernel Ridge Regression (KRR) models

Description

Visualizes fitted results from a Kernel Ridge Regression (KRR) model. Automatically generates
predictions on a regular grid (120% of training sample size) and overlays them with training data.

Usage

## S3 method for class 'krr'
plot(x, show_points = TRUE, ...)

Arguments

x A fitted KRR model (class "krr") returned by fastkrr.

show_points Logical; if TRUE, displays the training data points. Default = TRUE.

... Additional arguments (currently ignored).

Details

For multivariate inputs (d ≥ 2), visualization requires fixing all but one variable. For example, in
2D, one can plot f(x1, x2 = x̄2) to examine the effect of x1 while holding x2 at its mean.

Value

A ggplot object showing the fitted regression curve.

See Also

fastkrr, predict.krr

Examples

set.seed(1)
n = 1000
rho = 1
X = runif(n, 0, 1)
y = sin(2*pi*X^3) + rnorm(n, 0, 0.1)
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model_exact = fastkrr(X, y, kernel = "gaussian", rho = rho, opt = "exact", verbose = FALSE)
plot(model_exact)

predict.krr Predict responses for new data using fitted KRR model

Description

Generates predictions from a fitted Kernel Ridge Regression (KRR) model for new data.

Usage

## S3 method for class 'krr'
predict(object, newdata, ...)

Arguments

object A S3 object of class krr created by fastkrr.

newdata New design matrix or data frame containing new observations for which predic-
tions are to be made. If newdata is missing, the function returns fitted values.

... Additional arguments (currently ignored).

Value

A numeric vector of predicted values corresponding to newdata or fitted values.

See Also

fastkrr, make_kernel

Examples

# Data setting
n = 30
d = 1
X = matrix(runif(n*d, 0, 1), nrow = n, ncol = d)
y = as.vector(sin(2*pi*rowMeans(X)^3) + rnorm(n, 0, 0.1))
lambda = 1e-4
rho = 1

# Fitting model: pivoted
model = fastkrr(X, y, kernel = "gaussian", rho = rho, lambda = lambda, opt = "pivoted")

# Predict
new_n = 50
new_x = matrix(runif(new_n*d, 0, 1), nrow = new_n, ncol = d)
new_y = as.vector(sin(2*pi*rowMeans(new_x)^3) + rnorm(new_n, 0, 0.1))
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pred = predict(model, new_x)
crossprod(pred - new_y) / new_n

predict(model) == attributes(model)$fitted.values

print.approx_kernel Print method for approximated kernel matrices

Description

Displays the approximated kernel matrix and key options used to construct it.

Usage

## S3 method for class 'approx_kernel'
print(x, ...)

Arguments

x An S3 object created by approx_kernel.

... Additional arguments (currently ignored).

Details

The function prints the stored approximated kernel matrix (top-left 6x6) and summarizes options
such as the approximation method (opt), approximaion degree (m), numerical tolerance (eps), and
number of threads used (n_threads).

Value

An approximated kernel matrix and its associated options.

See Also

approx_kernel, print.krr, print.kernel_matrix

Examples

# Data setting
set.seed(1)
d = 1
n = 1000
m = 50
rho = 1
X = matrix(runif(n*d, 0, 1), nrow = n, ncol = d)
y = as.vector(sin(2*pi*rowMeans(X)^3) + rnorm(n, 0, 0.1))
K = make_kernel(X, kernel = "gaussian", rho = rho)
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# Example: nystrom
K_nystrom = approx_kernel(K = K, opt = "nystrom", m = m, d = d, rho = rho, n_threads = 1)
class(K_nystrom)

print(K_nystrom)

print.kernel_matrix Print method for kernel matrices

Description

Displays the top-left 6×6 portion of a kernel or approximated kernel matrix for quick inspection.

Usage

## S3 method for class 'kernel_matrix'
print(x, ...)

Arguments

x An object of class kernel_matrix, which may represent either an exact kernel
matrix (from make_kernel or fastkrr) or an approximated kernel matrix (from
approx_kernel).

... Additional arguments (currently ignored).

Value

A top-left 6x6 block of the kernel matrix to the console.

See Also

approx_kernel, fastkrr, print.approx_kernel, print.krr

Examples

# data setting
set.seed(1)
n = 1000 ; d = 1
m = 100
rho = 1
X = matrix(runif(n*d, 0, 1), nrow = n, ncol = d)
y = as.vector(sin(2*pi*X^3) + rnorm(n, 0, 0.1))

# Example for fastkrr
fit_pivoted = fastkrr(X, y,

kernel = "gaussian", opt = "pivoted",
m = 100, fastcv = TRUE, verbose = FALSE)
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class(attr(fit_pivoted, "K"))
print(class(attr(fit_pivoted, "K")))

class(attr(fit_pivoted, "K_approx"))
print(class(attr(fit_pivoted, "K_approx")))

# Example for make_kernel
K = make_kernel(X, kernel = "gaussian", rho = rho)

class(K)
print(K)

# Example for make_kernel
K_rff = approx_kernel(X = X, opt = "rff", kernel = "gaussian",

d = d, rho = rho, n_threads = 1, m = 100)

class(attr(K_rff, "K_approx"))
print(attr(K_rff, "K_approx"))

print.krr Print method for fitted Kernel Ridge Regression models

Description

Displays key information from a fitted Kernel Ridge Regression (KRR) model, including the orig-
inal call, first few coefficients, a 6×6 block of the kernel (or approximated kernel) matrix, and the
main kernel options.

Usage

## S3 method for class 'krr'
print(x, ...)

Arguments

x An S3 object of class krr, typically returned by fastkrr.

... Additional arguments (currently ignored).

Value

A human-readable summary of the fitted KRR model to the console.

See Also

fastkrr, print.approx_kernel, print.kernel_matrix
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Examples

# Data setting
set.seed(1)
lambda = 1e-4
d = 1
n = 50
rho = 1
X = matrix(runif(n*d, 0, 1), nrow = n, ncol = d)
y = as.vector(sin(2*pi*rowMeans(X)^3) + rnorm(n, 0, 0.1))

# Example: exact
model = fastkrr(X, y,

kernel = "gaussian", opt = "exact",
rho = rho, lambda = 1e-4)

class(model)

print(model)

summary.krr Summary method for fitted Kernel Ridge Regression models

Description

Displays key information from a fitted Kernel Ridge Regression (KRR) model, including the orig-
inal call, first few coefficients, a 6×6 block of the kernel (or approximated kernel) matrix, and the
main kernel options.

Usage

## S3 method for class 'krr'
summary(object, ...)

Arguments

object An S3 object of class krr, typically returned by fastkrr.

... Additional arguments (currently ignored).

Value

A human-readable summary of the fitted KRR model to the console.

See Also

fastkrr
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Examples

# Data setting
set.seed(1)
lambda = 1e-4
d = 1
n = 50
rho = 1
X = matrix(runif(n*d, 0, 1), nrow = n, ncol = d)
y = as.vector(sin(2*pi*rowMeans(X)^3) + rnorm(n, 0, 0.1))

# Example: exact
model = fastkrr(X, y,

kernel = "gaussian", opt = "exact",
rho = rho, lambda = 1e-4)

class(model)

summary(model)

tunable.krr_reg Expose tunable parameters for "krr_reg"

Description

Supplies a tibble of tunable arguments for "krr_reg()".

Usage

## S3 method for class 'krr_reg'
tunable(x, ...)

Arguments

x A "krr_reg" model specification.

... Not used; included for S3 method compatibility.

Value

A tibble (one row per tunable parameter) with columns "name", "call_info", "source", "component",
and "component_id".
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