DynTxRegime: Methods for Estimating Optimal Dynamic Treatment Regimes
Methods to estimate dynamic treatment regimes using Interactive
Q-Learning, Q-Learning, weighted learning, and value-search methods based on
Augmented Inverse Probability Weighted Estimators and Inverse Probability
Weighted Estimators. Dynamic Treatment Regimes: Statistical Methods for
Precision Medicine, Tsiatis, A. A., Davidian, M. D., Holloway, S. T., and Laber, E. B.,
Chapman & Hall/CRC Press, 2020, ISBN:978-1-4987-6977-8.
| Version: |
4.16 |
| Depends: |
methods, modelObj, stats |
| Imports: |
kernlab, rgenoud, dfoptim |
| Suggests: |
MASS, rpart, nnet |
| Published: |
2025-05-03 |
| DOI: |
10.32614/CRAN.package.DynTxRegime |
| Author: |
Shannon T. Holloway [aut, cre],
E. B. Laber [aut],
K. A. Linn [aut],
B. Zhang [aut],
M. Davidian [aut],
A. A. Tsiatis [aut] |
| Maintainer: |
Shannon T. Holloway <shannon.t.holloway at gmail.com> |
| License: |
GPL-2 |
| NeedsCompilation: |
no |
| Materials: |
NEWS |
| In views: |
CausalInference |
| CRAN checks: |
DynTxRegime results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=DynTxRegime
to link to this page.