CausalMetaR: Causally Interpretable Meta-Analysis
Provides robust and efficient methods for estimating causal effects in a target population using a multi-source dataset, including those of Dahabreh et al. (2019) <doi:10.1111/biom.13716>, Robertson et al. (2021) <doi:10.48550/arXiv.2104.05905>, and Wang et al. (2024) <doi:10.48550/arXiv.2402.02684>. The multi-source data can be a collection of trials, observational studies, or a combination of both, which have the same data structure (outcome, treatment, and covariates). The target population can be based on an internal dataset or an external dataset where only covariate information is available. The causal estimands available are average treatment effects and subgroup treatment effects. See Wang et al. (2025) <doi:10.1017/rsm.2025.5> for a detailed guide on using the package.
Version: |
0.1.3 |
Depends: |
R (≥ 2.10) |
Imports: |
glmnet, metafor, nnet, progress, SuperLearner |
Suggests: |
testthat (≥ 3.0.0) |
Published: |
2025-04-11 |
DOI: |
10.32614/CRAN.package.CausalMetaR |
Author: |
Yi Lian [aut],
Guanbo Wang [aut],
Sean McGrath
[aut, cre],
Issa Dahabreh [aut] |
Maintainer: |
Sean McGrath <sean.mcgrath514 at gmail.com> |
BugReports: |
https://github.com/ly129/CausalMetaR/issues |
License: |
GPL (≥ 3) |
URL: |
https://github.com/ly129/CausalMetaR,
https://doi.org/10.1017/rsm.2025.5 |
NeedsCompilation: |
no |
Materials: |
README, NEWS |
In views: |
MetaAnalysis |
CRAN checks: |
CausalMetaR results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=CausalMetaR
to link to this page.