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COMPACTNESS RESULT FOR PERIODIC STRUCTURES AND
ITS APPLICATION TO THE HOMOGENIZATION OF A
DIFFUSION-CONVECTION EQUATION

ANVARBEK MEIRMANOV, RESHAT ZIMIN

ABSTRACT. We prove the strong compactness of the sequence {c®(x,¢)} in
Lo(Qr), Qr = {(x,t) : x € Q C R3,t € (0,7)}, bounded in W, *(Qr)
with the sequence of time derivative {8/8¢t(x(x/e)c?)} bounded in the space

Lg((O7 T);W;l(Q)). As an application we consider the homogenization of
a diffusion-convection equation with a sequence of divergence-free velocities
{ve(x,t)} weakly convergent in La2(Qr).

1. INTRODUCTION

There are several compactness criteria and among them Tartar’s method of com-
pensated compactness [I7] and the method suggested by Aubin in [6] (see also [14]).
These methods intensively used in the theory of nonlinear differential equations.
As a rule, the first one has applications in stationary problems, while the second
method is used in non-stationary nonlinear equations.

In the present publication we discuss the method, closed to the Aubin com-
pactness lemma. In its simplest setting, this result provides the strong compact-
ness in L2 (Q7) (throughout the article, we use the customary notation of func-
tion spaces and norms [I4] [13]) to the sequence of functions {c¢°(x,t)} bounded in
Loo((0,T); La(2)) N W, " (Qr) with the sequence of the time derivatives {dc® /Ot}
bounded in L ((0,T); W{l(Q)). But in many applications (especially in homoge-
nization), the second condition on a boundedness of the time derivatives in some
dual space is not always satisfied. Sometimes, instead of the last condition, one has
the boundedness of time derivatives in a dual space L ((0,T); W5 1(9?)), defined
on some periodic subdomain 3 C Q. Using new ideas of Nguetseng’s two-scale
convergence method [16] we prove that even under this weak condition the sequence
{c*(x,t)} still remains strongly compact in La(27). The main point here is the fact,
that if for some ¢y € (0,7,

lim 52/ Ve (x, t0)|? dx = 0,
e—0 Q
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then the bounded in L2(€2) sequence {c°(x,to)} contains a subsequence, which two-
scale converges in Lo (€2) to some function ¢(x, o).

Recall that, in general, any bounded in Lo () sequence {uf} contains a two-scale
convergent subsequence {u®*}, where the limiting function U(x,y) is 1-periodic in
variable y € Y = (0,1)™:

/Q P ), 2 ) — / [ Uyt y)iys

for any smooth function ¢(x,y), 1-periodic in the variable y. In particular, for
@(x,¥) = ¢o(y) - h(x), where pg € L2(Y) and h € Loo(92).

A similar compactness result has been proved in [4] under different assumptions
on the sequence {c®(x,t)}. More precisely, the corresponding [4, Lemma 4.2] states,
that if for all e > 0

0< () < Mo,/ 5 (x + Ax, £) — ¢ (x, )2 d dt < Mow(|Ax]),
Qr
with some w(§), such that w(§) — 0 as £ — 0, and

0, ..
|| at (X c )HL2 ((O,T);I’Vz_l(ﬂ)) X 0,

where 0 < x~ < x° < xT < 1, x* = const, then the family {c°} is a compact set
in L2 (QT)

As an application of our result we consider the homogenization of diffusion-
convection equation

€
aact +vE-VeE =A¢, xeQf, te(0,T), (1.1)
with boundary and initial conditions
(Ve —voc) v =0, x€dQ\S, te(0,T), (1.2)
E(x,t)=0, xeSNNs, te(0,T), (1.3)
(x,0) = ¢p(x), x€Q°. (1.4)

In (1.2)), v is the unit outward normal vector to the boundary 9Q¢ and S = 99.
We assume that velocities v° are uniformly bounded in Lg((0,T); L4(Q2)):

T 2
/ (/ |v5|4dx> dt < M2, (1.5)
0 Q

V-ve=0,x€ Qr. (1.6)
As usual, the solution to the problem ([1.1)—(1.4)) is understood in a weak sense
as a solution of the integral identity

/QE (cE 9 _ (Ve —vocf) -ng) dx dt = —/ co(x)p(x,0) dz (1.7)

and

E €

for any smooth functions ¢, such that ¢(x,T) = 0.
Homogenization means the limiting procedure in (1.7) as ¢ — 0 and the main
problem here is how to pass to the limit in the nonlinear term

cv® - V.
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It has been done for velocities with a special structure
X

ve = v®(x),0rv® = v(x,t, =)
€

(see, for example, [l [3 [7, 8 @ [10]). However, in the general case we need the
strong compactness in L2 (Qr) of the sequence {¢*}. Our compactness result and
the energy estimate
max / | (x, ) 2dx —|—/ Ve (x, )| da dt < M7
o<t<T e Q%
provide this compactness.
Note, that to apply any compactness result we must consider sequences in a fixed
domain. To do that we use the well-known extension result [I] and restrict ourself
with special domains Q°:

Assumption 1.1. Let x(y) be l-periodic in the variable y function, such that
X(¥)=1lyeY;CY, x(y) =0,y €Ys =Y\Yy.
(1) The set Yy is an open one and v = 9Yy N JY; is a Lipschitz continuous
surface.
(2) Let Y§ be a periodic repetition in R™ of the elementary cell eYy. Then Y
is a connected set with a Lipschitz continuous boundary 5‘Yf
(3) © C R™is a bounded domain with a Lipschitz continuous boundary S = 9
and QF =QNYF.

Due to periodicity of Y the characteristic function of the domain 0° in (2 has

a form:
X

() = x(5).
For such domains Q¢ the extension theorem [I] allows us to construct a linear
operator A®
A% W3 (QF) — Wa(Q), & = A°(c°), (1.8)
such that

| FoPdr<co [ e, (1.9)
Q Qe

/ V& (x,1)|%dr < Co/ Ve (x,t) |2 d. (1.10)
Q Qs
where the constant Cy = Cy(€2,Yy) does not depend on ¢ and ¢t € (0,T).

2. MAIN RESULTS
Our principal result is the following

Theorem 2.1. Let {¢°(x,t)} be a bounded sequence in Lo ((0,T); Lo (Q))OWQLO(QT)
and weakly convergent in Ly((0,T); L2(22)) N W' (Qr) to a function c¢(x,t). Also

let the sequence {0/0t(x%(x)&(x,t))} be bounded in Lo((0,T); W5 (), where

X°(x) = x(x/¢e), x(y) is I-periodic in the variable y measurable bounded function,

such that

(X)y = /Yx(y)dy =m # 0,

and Y is the unit cube in R™. Then the sequence {¢°(x,t)} converges strongly in
Lo (Qr) to its weak limit c(x,t).
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As an application of this result we consider a homogenization of the problem

(L.1)—(L.4).

We prove the following result.
Theorem 2.2. Under conditions (1.5)(L.6) and Assumption|[1.1]let ¢*(x,t) be the
solution to the problem (1.1)—(1.4), co € L2(£2),

/ |col?dr < MZ, (2.1)
Q

and

Ve = v  weakly in L2(Qr), (2.2)
where v (x,t) = x°(x)ve(x,t). Then the sequence {¢°}, where && = A®(c), con-
verges strongly in Ly(Qr) and weakly in Wy (Qr) to the solution c(x,t) of the
homogenized equation

dc

ma:V~(E~V¢:+(v07v)0), x €O te(0,7), (2.3)

with boundary and initial conditions
c(x,t)=0,x€ S, t € (0,T), (2.4)
c(x,0) =co(x), x€. (2.5)

In (2.3) the symmetric strictly positively defined constant matriz B and the vector
vo are given below by formulas (4.13)) and (4.14).
3. PROOF OF THEOREM [2.1]

We split the proof into several independent steps. As a first step we prove the
following.

Lemma 3.1. Under conditions of Theorem [2.1] the sequence {x°(x)c*(x,t)} con-
verges weakly in La(Q) to the function me(x,t) for almost all t € (0,T).

Proof. By the properties of the two-scale convergence [16, [I5] the sequence {¢°}
two-scale converges in Lo(§27) to the function ¢(x,t). That is, for any 1-periodic in
variable y smooth function ¢(x,y,t)

/ Ex,p(x, = ) dudt — | e(x,t)( / o(x,y, t)dy) dxd.
Qr € Qr Y

In particular, this relation holds true for ¢ = o (x,t)p1(y) with ¢o € Loo(Qr) and
1 € La(Y). If we choose

p(x, =, 1) = X)) = X (x)n(t)(x),
then
. & (x, 1) X" (X)) (x) dx dt — . me(x, )n(t)(x) da dt. (3.1)
Let

fj,(t):/QXE(X)EE(X,t)dJ(x)dL f“t)z/ﬂmc(x,t)z/;(x)dx.

Then the above relation means that

/n@mwmﬁ/nwmm% (3.2)
0 0
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for any functions 7 € L (0,T) and ¢ € Lo ().

To prove the lemma we have to show that for almost all ¢ € (0,7) functions
[ (t) pointwise converge to the function fy(t). First of all, we restrict ourself with
functions 1 € Wi ().

By the assumptions in Theorem the time derivatives 9/ at(xe(x)ée) belong

to the space Ly ((0,7); W{l(Q)) and uniformly bounded there. This means that
there exists a sequence {F¢(x,t)}, such that

/ |Fe|? do dt < MG,
Qr

and

/ dziff)xs(x)és(x,t)zb(x)dxdt: / p(OF (x, 1) - Vo (x)dedt  (3.3)
Qr Oz

for any ¢ €} (0,T) and ¢ € W (). If we put

o(6) =~ [ Fxit) - Vulx)ax
Q
then
T
| 1o Par < AU = 2,
and identity (3.3]) rewrites as

T
/0 ( fj,(t)dfl—it) + o(t)g"(6))dt = 0. (3.4)

Therefore by [2], the function fy,(t) possesses the generalized time derivative ¢°(t) €
L5(0,T) and takes place a representation

t
F500) = £5(t) + / g (7Y, | F5(t2)] < M.
te
In particular,

[F5 ()] < My, [ f5(t) = Fi(t2)] < Mylts — t1]"/2. (3.5)

Thus, we may apply the Ascoli-Arzela theorem [I2] and state that there exists
some subsequence {e,,}, such that the sequence of continuous functions {f;"(¢)}

uniformly converges to some continuous function f¢ (t):
for) = Fut), asen—0,9te(0,T). (3.6)
Therefore,
T T B
/ n(t) fyr (t)dt — / n(t)f,(t)dt, asen, — 0. (3.7
0 0
But, on the other hand, according to (3.1)

/0 n() fyr (Hdt — /0 n(t) fy (t)dt, ase,, — 0. (3.8)

By the arbitrary choice of n(t) (3.6)-(3.8]) result
fom () = fy(t) as ey — 0, for almost all t € [0,T7.
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Due to the uniqueness of the limit, the last relation holds for the entire sequence

{/5(0)}:
fa(t) :/QXE(X) °(x, t)(x)dx — / me(x, t)Y(x)de = fy(t)

as ¢ — 0 for almost all ¢ € (0, 7). O
As a next step we prove the following result.
Lemma 3.2. Under conditions of Theorem there exists a subsequence {e},

such that
lim <} / V& (x, t0)|2dz = 0 (3.9)

er—0

for almost all ty € (0,T).

Proof. In fact, the boundedness of the sequence {V&€} in La(Qr) implies

lim62/ |Vé&E (x,t)|? de dt = 0. (3.10)
Qr

e—0
Let
) = 52/ |VéE (x,t)|?d.
Q

Then the relation means that the sequence {u®} converges to zero in L1 (0, T).
Due to the well-known theorem of functional analysis [I2] there exists some subse-
quence {ey}, such that the sequence {u®*(to)} pointwise converge to zero for almost
all tg € (O,T)

u®*(tg) — 0 for almost all ¢y € (0,T).
The above relation proves . ([

The following statement is a crucial one and essentially uses the notion of two-
scale convergence.

Lemma 3.3. Under the conditions of Theorem[2.1], the sequence {¢°*(x,t)} two-
scale converges in Lo(QY) to the function c(x,tg) for almost all ty € (0,T).

Proof. Let @ C (0,T) be the set of full measure in (0,T"), where hold true conditions

of the Lemma and condition .

By hypothesis, the sequence {¢°* (x,tg)} for tg € @ is bounded in Lo(Q2). There-
fore, there exists some subsequence which two-scale converges in Lo(£2) to some
1-periodic in variable y function C(x,y,to) € Lo(Q x Y). Applying integration by
parts

el /Q Ve (x, 1) 90
=i [ to)elZ)- Tods = [ ¢ oto) (7, - o)) (x)ds

Q

for arbitrary functions ¢ € W(Y) and ¢ € W (Q), and relation (3.9) we arrive at
the equality

/1& / (x,¥,t0)Vy w(Y)dy)dIZO (3.11)

after passing to the limit as e, — 0.
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By the arbitrary choice of test functions ¢ and 1, the last integral identity
implies

C(vaatO) = E(X7 tO)' (312)

Thus, the chosen subsequence of the sequence {c®*(x,%p)} two-scale converges in
L2(9) to the function ¢(x,tp). In particular, by the properties of two-scale con-
vergent sequences [16] the same subsequence of {x®* (x)c* (x, o)}, where x*(x) =
X(x/er), weakly converges in L2(€2) to the function mé(x,tp). On the other hand,
due to Lemma this subsequence weakly converges in Lo(£2) to the function
me(x, tg). The uniqueness of the weak limit results the equality

c(x,t0) = c(x,t0)
and the convergence of the entire sequence {c®*(x,1p)} to the same limit. O

Lemma 3.4. Under the conditions of Theorem the sequence {¢°*} converges
strongly in Lo(Qr) to the function c(x,t).

Proof. Let
H = W3 (Q) CH® = Ly(Q) c H = W, H(Q).
It is well known that H' is compactly imbedded in H°, and HC is compactly imbed-
ded in H~! ([14], [2]). The first imbedding provides for any 7 > 0 an existence of
some constant C), such that
165 — cllmo () < mlle™ — cllg () + Cylle — cllm-1(£)
for all £ and for all t € [0,T] (see [14]). Therefore,

T T T
/0 1% = ellfzo (t)t < n/o 6%+ — ell (t)dt + Cn/o 125+ = ellfz— ()t
T
|

<2nME + Cn/ &Er — c||Foa (t)dt.
0

Due to the compact imbedding H® — H~!, the weak convergence in H° of the
sequence {¢°*(x,tg)} to the function c¢(x,tg) for all tg € @, and the dominated
convergence theorem [12] one has

T
/ 6% — c||Z- (t)dt — 0 as k — oo.
0

This last fact and the arbitrary choice of the constant n prove the statement of the
lemma. (]

4. PROOF OF THEOREM [2.2]
To simplify the proof we additionally suppose that

Assumption 4.1. (1) Vs CY,yNIY = 0
(2) the domain §2 is a unit cube;
(3) 1/e is an integer.

As before, we divide the proof by several steps. As a first step we state the
well-known existence and uniqueness result for solutions of the problem (|1.1)—(1.3)
(see [13]).
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Lemma 4.2. Under conditions of Theorem|[2.9 for alle > 0 the problem (L.1))—(L.4)

has a unique solution

¢ € Loo((0,T); Lo (QF)) N W, °(Q5)

and
max / | (x,t)[2dx +/ Ve |2 do dt < M7 (4.1)
0<t<T Je Qs
To get the basic estimate (4.1]) we first rewrite (1.1)) in the form
a £
3ct =V - (V& —vec),
multiply by ¢® and integrate by parts over domain 2°:
1d
—— |cs(x,t)|2dx+/ Ve |Pda :/ v® - Vesde.
2 dt QS QE €
Let ¢°(.,t) = A°(c*(.,t)) be an extension of the function ¢* onto domain Q. Then
1d
—— | X°|&E(x, ) Pdx +/ X°|VE|Pdr = / X°eEve - Véfde = Jy. (4.2)
2dt Jo Q Q

To estimate J; we use the Holder inequality:

PARS (/ X6|Vs|4d.13)1/4 ) (/ Xs|5€‘4d$)1/4 ) (/ Xs‘vés|2dx)l/2
Q Q Q
< ([ cnertan) ([ 1@t ([ vepan)
Q Q Q

Due to Assumption [£1]
& € Wi (Q),
and we may apply the well-known interpolation inequality (see [13])
(/ & *dz) <ﬁ(/ |6€|2da:)1/8-(/ Ve Pdz)*S.
Q Q Q
Therefore (see (1.9) and (1.10))
|J1| < 6(/ X8|V8|4dl')1/4 . (/ |é€|2d$)1/8 5 (/ |Vé8|2d1')7/8
Q Q Q

<Coﬂ(/QXE|VE|4d$)1/4'(/§2X5|68|2d$)1/8'(/QXE|VéE|2d$)7/8.

Applying Young’s and Gronwall inequalities and using assumption (1.5) and prop-
erties of the extension operator A® we arrive at

max / \éa(x,t)|2d3:+/ |Vé&E 2 drdt < M3, (4.3)
0<t<T Jq Qr

which is obviously equivalent to (4.1).
The integral identity for the function ¢ with test functions ¢ = p(t)1(x), ¢ €
WH0,T), v € W} Q) takes a form

/ d—@(t)xséad)(x) dz dt = / o(t)x* (V& — vee&) - Vip(x) da dt.
or dt Qr

Thus,
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and we may apply Theorem [2.1| and Nguetseng’s Theorem [16] to state, that up to
some subsequence the sequence {¢°} weakly in W,°(Qr) and strongly in Ly (Qr)
converges to the function ¢(x,t), and the sequence {Vé} two-scale converges in
Ly(Qr) to 1-periodic in variable y function Ve(x,t) + V,C(x,y,t).

We may also assume that the sequence {v®} two-scale converges to 1-periodic in
variable y function V(x,y,t).

The next lemmas are standard. We derive the macro-and microscopic equations
and find the solution of microscopic equation.

Lemma 4.3. Under conditions of Theorem the two-scale limits c(x,t) and
C(x,y,t) satisfy the macroscopic integral identity

/Q (mc%—‘f — (mVe+(V,C)y, —ve) - V¢ dm dt = /mco o(x,0)dr (4.4)

for arbitrary smooth functions ¢p(x,t), such that ¢(x,T) = 0, which is equivalent to
the macroscopic equation

m% =V (mVe+(V,C)y, —cv), xeQte(0,T), (4.5)

with boundary and initial conditions
c(x,t) =0,x € S,t € (0,7), (4.6)
c(x,0) =co(x), x€. (4.7)

To prove this lemma we just fulfill the two-scale limit as € — 0 in the integral
identity (1.7) for the functions ¢ in the form

/Q XE(EE?;f (V&E —veer) - V(;S) dx dt = /xsco(x)(b(x,O)dx (4.8)

with the test functions ¢ = ¢(x, t).

Lemma 4.4. Under conditions of Theorem the two-scale limits c(x,t) and
C(x,y,t) satisfy the microscopic integral identity

/Y x(y)(Ve+V,C —cV) -V dy =0 (4.9)

for arbitrary 1-periodic in variable y smooth functions ¢1(y).

The integral identity (4.9) follows from (4.8) after fulfilling the two-scale limit
as € — 0 with test functions ¢ = edo(x,t)p1(x/¢).

Lemma 4.5. Let C(9 (y),i =1,2,3, be the solution to the integral identity

/Yx(y)(ei + VyC'(i)) -Voi1dy =0, (4.10)

and C©) (y,x,t) be the solution to the integral identity
/Yx(y)(V +V,C0) Ve dy =0, (4.11)
with arbitrary 1-periodic in variable y smooth functions ¢1(y). Then the function
C(x,y,t) = (23: COy)®e;)  Ve(x,t) + CO(y,x,t)e(x, 1) (4.12)

i=1
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solves the integral identity .
In f e; is the standard Cartesian basis vector and the matriz a ® b
is defined by the formula
(a®@b)-c=a(b-c)

for any vectors a, b, c.

The proof of the lemma is straightforward. It is omitted.
Substitution (4.12) into (4.5 gives us desired homogenized equation ([2.3)) with
boundary and initial conditions (2.4)—(2.5).

The matrix B and the vector vo(x,t) are defined as

3

B=ml+ (> (V,CY)y, ®e), (4.13)
1=1

vo(x,t) = (V,C D)y, (4.14)

where by definition (f)y; = fo f(y)dy.
Lemma 4.6. The matriz B is symmetric and strictly positively defined.

The proof is well-known, see [7, 11].
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