Pablo HDF Trace Utilities
User’'s Guide

1 Overview

Most HDF applications handle large amounts of data. Handling the data efficiently is important to
the performance of the application. The purpose of the Pablo HDF Trace Utilitiesisto provide
information about the calls to HDF routines and I/O operations, which may be analyzed. This
analysis provides a means for tuning code, which uses HDF functions. Visit the HDF website at
htt p: // hdf. ncsa. ui uc. edu for further information on HDF.

The Pablo HDF Trace Utilities consist of a Pablo instrumented copy of version 4.1R2 of the HDF
library, the Pablo Trace and Trace Extensions libraries, and some utilities for processing the
output. The instrumented version of the HDF library has hooks inserted into the HDF code which
call routines in the Pablo Trace Extension library just after entry to each instrumented HDF routine
and just prior to exit from the routine. The Pablo Trace Extension library has routines that track the
HDF and I/O activity between the entry and exit of the HDF routine during execution. A few lines
of code must be inserted in the users mai n program to enable tracing and to specify which HDF
procedures areto betraced. The program is linked with the special libraries to produce an
instrumented executable. Running this executable produces an output file called the trace file
which contains Pablo Self-Defining Data Format (SDDF) records. These SDDF records can then
be processed to extract information about the HDF and 1/0 activity that occurred during execution.
For further information about Pablo Self-Defining Data format, visit the Pablo website at
http://ww pabl 0. cs. ui uc. edu.

The Pablo HDF Trace Utilities provide two methods for instrumenting HDF codes, Runtime
Tracing and Summary Tracing.

1.1 Runtime Tracing

If the Runtime Tracing option is used, an SDDF packet called an HDF entry trace record iswritten
to the trace file each time an HDF procedure is entered. The HDF entry trace record contains
information such as the time that the procedure was entered and a code indicating the type of the
procedure. On return from atraced HDF procedure, an HDF exit trace record is produced which
contains the time of return. Each 1/O operation produces an SDDF record packet containing
duration of the operation. At the end of the run, the trace file contains enough information to
produce athorough analysis of the 1/0 and HDF activity that occurred during execution of the
program.

1.2 Summary Tracing

If the Summary Tracing option is used, statistics about the HDF and 1/O activity are recorded in
tables in memory during runtime. Prior to the end of execution, an SDDF record called an HDF

summary record is produced for each of the HDF procedures that were traced. These records
summarize the total number of 1/0 operations and calls to other traced HDF procedures that
occurred within each type of traced HDF procedure during runtime.

The Runtime Tracing option produces much more information than the Summary Tracing but may

also produce trace files that are extremely large. The size of the Summary Tracing output fileis
roughly proportional to the number of HDF procedures being traced.

2 Instrumenting Your Code

Any HDF code that can call Fortran or C programs can be instrumented. In order for your code to
produce output from HDF and 1/O calls, the main program must be modified slightly. The
modifications involve inserting a call to initialize tracing before any HDF calls are made and a call
to end tracing prior to exit from the program.

2.1 C Interface

If your main program iswrittenin C, add the line

HDFi nit Trace(traceFile , procMask , traceType) ;
anywhere in the executable portion of the code before the HDF code to be traced and add the line
HDFendTr ace();

anywhere after the codeto betraced. The functions HDFi ni t Tr ace and HDFendTr ace are
described as follows.

e HDFinitTrace
Usage:

#i ncl ude "ProcMasks. h"
void HDFinitTrace (char *traceFile, unsigned procMsk,
int traceType);

where
traceFi | e isthename of the file where the output isto be written. If Summary Tracing
is performed, afile named <t r aceFi | e>. map will also be produced
where<t r aceFi | e> isthe contents of the character stringt r aceFi | e.
The. map file contains information about the named HDF identifiers found
during execution.

procMask isabit string indicating the class of HDF functions to be traced (see below)

traceType isaninteger indicating the type of SDDF output :
traceType =0, no tracing output
traceType =1, perform Runtime Tracing
traceType =2, perform Summary Tracing

The possible choices of classes, which can be traced, correspond roughly to the capital letters at the
beginning of the names of the HDF entry points. For example, to trace such functions as SDst ar t
and SDcr eat e, the SD class should be traced.

The choices for function classes and the corresponding hexadecimal values of their masks are

DFAN 0x1
DFP 0x2
DFR8 0x4
DFSD 0x8
DF24 0x10

H 0x20
HE 0x40
SD 0x80
VF 0x100
\ 0x200
VH 0x400
VS 0x800
AN 0x1000
GR 0x2000
HA 0x4000
DA 0x8000

HUL 0x10000

Theinclude file, Pr ocMasks. h, defines DFAN_mask, DFP_mask, ..., HUL_mask to have the
hexadecimal values specified in the table above. A value of pr ocMask equal to DFAN_mask
would enable tracing of the DFAN class of HDF functions, a value of pr ocMask equal to
SD_mask would enable tracing of the SD class of HDF functions and so on. Thefile
ProcMasks. h liststhe names of the routines in the class corresponding to each mask.

The defined masks can be added to enable tracing of more than one class at the same time. For
example,

#include “ProcMasks.h”

pr ocMﬁék = SD mask + DFP_nask + H nask ;
HDFinitTrace ("nyFile.out", procMask, 1);

would enable tracing of the SD, DFP and H classes. The output would SDDF packets written to
myFi | e. out. Themask Al | HDF_nmask has value Ox1FFFF and enables tracing of all HDF

functions. The Pr ocMask. h fileisinthe HDF i ncl ude directory supplied with the HDF
package. If <hdf Di r > isthe directory containing the HDF programs, then use the flag
-1 <hdf Di r >/ i ncl ude inthe compile step.

e HDFendTrace
Usage:

void HDFendTr ace() ;

This call causes Pablo cleanup operations to be performed. The output file may be incomplete or
nonexistent if this call is not made.

See Example 1 in the Examples section for an illustration of the use of the HDFinitTrace and
HDFendTrace functions in a C program.

2.2 Fortran interface

If your main program is written in Fortran, add the call

call HDFinitTrace(traceFile , procMask, traceType)

anywhere in the executable portion of the code before the HDF code to be traced and add the call

cal |l HDFendTrace()

anywhere after the codeto betraced. Because Fortran is not case sensitive, upper or lower case
letters can be use for the subroutine names and other constants described below. Mixed caseis
used here for clarity.

* HDFinitTrace
Usage:
character*(*) traceFile

i ncl ude ' ProcMasks. i nc’
i nt eger procMask, traceType

call HDFinitTrace (traceFile, procMask, traceType)

where
traceFi | e isthename of the file where the output isto be written. If Summary Tracing

is performed, afile named <t r acef i | e>. map will also be produced
where<tr acef i | e>isthevalue of the character arrayt r aceFi | e. The

. map file contains information about the named HDF identifiers found
during execution.

procMask isabit string indicating the class of HDF functions to be traced (see below)

traceType isaninteger indicating the type of SDDF output :
traceType =0, no tracing output
traceType =1, perform Runtime Tracing
traceType =2, perform Summary Tracing

The possible choices of classes, which can be traced, correspond to the capital letters at the
beginning of the names of the HDF entry points. For example, to trace such functions as SDst ar t
and SDcr eat e, the SD class should be traced. The choices for function classes and the
corresponding hexadecimal values of their masks are:

DFAN 2’1’
DFP 2722
DFR8 2’4’
DFSD 72’8’
DF24 7’10

H 220
HE Z'40
SO 780
VF Z100
Vv 2’200’
VH Z'400°
VS Z'800°
AN 7’1000’
GR Z2000°
HA Z'4000’
DA Z'8000’
HUL Z'10000°

The include file Pr ocMasks. i nc defines DFANmask, DFPnask, ..., HULmask to have the
hexadecimal values specified in the table above. A value of pr ocMask equal to DFANmask
would enable tracing of the DFAN class of HDF functions, a value of pr ocMask equal to
SDmask would enable tracing of the SD class of HDF functions and so on. Thefile
ProcMasks. i nc liststhe names of the routines in the class corresponding to each mask.

The defined masks can be added to enable tracing of more than one class at the sametime. For
example,

i ncl ude “ProcMsks.inc”

procrrﬁék = SDmask + DFPmask + Hmask
call HDFinitTrace ("myfile.out", procrmask, 1)

would enable tracing of the SD, DFP and H classes. Output would be SDDF packets written to
myfile.out. Themask al | hdf mask has value Z'1FFFF and enables tracing of all HDF functions.
Thefile Pr ocMasks. i nc isinthe HDF include directory. If <hdfDir> isthe directory
containing the HDF programs, then usetheflag -1 <hdf Di r >/ i ncl ude in the compile step.

» HDFendTrace:
Usage:
call HDFendTrace()

This call causes Pablo cleanup operations to be performed. The output file may be incomplete or
nonexistent if this call is not made.

See Example 2 in the Examples section for an illustration of the use of the subroutines
HDFinintTrace and HDFendTrace in aFortran program.

2.3 Linking

The libraries required to enable tracing in your code are the HDF libraries| i bnf sd-i nst . a and
I'i bdf -1 nst. a, and the Pablo libraries| i bPabl oTr aceExt . a and| i bPabl oTr ace. a.
In addition, the HDF libraries| i bz. a and | i bj peg. a must be linked in aswell. If the HDF
libraries are located in the directory <hdf Di r >/ | i b and the Pablo Trace Libraries are located in
<pabl oDi r>/1i b, then the flags

-L<hdfDir>/lib -L<pabloDir>/lib -Infsd-inst -ldf-inst —lz —ljpeg \
-| Pabl oTr aceExt -1 Pabl oTr ace

should be used in the link step. More libraries may be needed, depending on the application.

3 Processing the Output

The output produced from the execution of the instrumented HDF program is a binary file that must
be processed using SDDF utilities. As part of the Pablo HDF Utilities, the executables

CreateH DF Records and HDF StatsT ables are provided to transform the output file into statistical
tables.

3.1 CreateHDFRecords

CreateHDFRecords is used only with Runtime Tracing. This utility must be run on the trace file
produced during execution. For each traced HDF procedure call, it summarizes the 1/0 activity and
number and duration of calls to other HDF procedures that occurred. This summary iswritten to an
output file as an SDDF packet.

The syntax for this utility is
CreateH DF Records tracefile [-0 outfil€]

where
tracefile isthe trace file produced by running the instrumented program, i.e., the value of
name specified inthet r aceFi | e parameter for HDFi ni t Tr ace .

If the -0 option is selected, the name of the new SDDF fileis outfile. If -0 isnot specified, the
output file is pabloHDF.bin.

Execution of CreateHDFRecords also produces another files, one with a.map suffix. That is, if the
—o outfile option is used, afiles name outfilemap is produced, and if the —o option is not used, the
file pabloHDF.bin.map is produced. The .map file contains alist of all the named identifiers of
HDF quantities such as files, scientific data sets, and dims that were accessed during execution.

For each named identifier, thereis a corresponding number assigned to it by Pablo in this.map file.

3.2 HDFStatsTables

The HDFStatsT ables utility can be used either on the outpuit file produced by running
CreateHDFRecords on the output from Runtime Tracing or it can be used directly on the output file
produced by Summary Tracing. This utility produces statistical tables summarizing the HDF and
I/O activity within the program. The user may optionally select to summarize only the activity that
isrelated to a specific named HDF identifier. The tables produced by HDFStatsT ables are written
to the standard output.

The HDFStatsTables utility is invoked as follows:
HDF StatsTables [-hdfID i] hdftracefile

where
hdftracefileisthe file produced by CreateHDFRecords if Runtime Tracing was performed
or the trace file specified for Summary Tracing output

options:
-hdfID i specifies that only the HDF and I/O activity associated with the HDF named
identifier with associated Pablo Id i should be reported. The value of i
associated with an HDF named identifier can be obtained from the .map file

produced either by CreateHDFRecords if Runtime Tracing was performed or
directly from the run if Summary tracing was performed.

3.2.1 Output Tables

The HDFStatsT ables utility produces severa tables, General HDF Summary Information., the I/O
Operation Count Summary, the 1/0 Duration Summary, and the Bytes Transferred Summary.

3.2.1.1 General HDF Summary Information

This table contains information such as the time of the first and last HDF call, the approximate
execution time of the program, the total amount of execution time spent and the percent of
execution time spent in HDF procedures and the number of HDF calls. After that thereisa
summary titled General HDF Activity which contains a line for each of the HDF procedures that
were traced. The entriesinthe row are

» the number of calls made to the procedure,

» theinclusive duration time of the procedure, i.e., the total time spent in the procedure,

» theexclusive duration, i.e., the total time spent in the procedure excluding 1/O operations

and calls to other traced HDF procedures,

* the number of standard 1/0O operations performed by the procedure,

» thetotal time spent doing 1/0 in the procedure,

» the number of MPI-10 operations performed by the procedure,

» thetotd time spend in MPI-10 operations,

» the number of callsto other traced HDF procedures made by the procedure,

» total time spent in other traced HDF procedures.

An example of the General Summary Information and General HDF Activity Table is given in the
section 4.

3.2.1.2 I/O Operation Count Summary

The I/O Operation Count Summary table lists the number of I/O operations performed within each
of the traced HDF procedures. It lists only those procedures that performed I/O operations. Each
line gives the procedure name and the number of Read, Write, Asynchronous Read, Asynchronous
Write, Open, Close, Seek, Wait, and Other I/O operations performed.

An example of an /O Operation Count Summary Table is given in the section 4.

3.2.1.3 /O Operation Duration Summary

The 1/O Operation Duration Summary table lists the total time spent performing 1/O operations
performed within each of the traced HDF procedures. It lists only those procedures that performed
I/O operations. Each line gives the procedure name and the total time spend performing Read,

Write, Asynchronous Read, Asynchronous Write, Open, Close, Seek, Wait, and Other 1/0
operations.

An example of an I/O Operation Duration Summary Table is given in the section 4.

3.2.1.4 Bytes Transferred Summary

The Bytes Transferred Summary table lists the number of bytes transferred by each of the traced
procedures. It lists only those procedures that performed 1/O operations. Each line givesthe
number of bytes transferred by Read, Write, Asynchronous Read, and Asynchronous Write 1/0
operations.

An example of a Bytes Transferred Summary Table is given in the section 4.

4 A C Language Example

The steps to obtaining the statistical tables of the HDF and 1/0 activity in your code are
» modify your code to enable instrumentation selecting Runtime or Summary tracing,

» compile your code using the—I <hdf Di r >/ i ncl ude option, where <hdf Di r > isthe
directory containing the HDF software,

* link your object code with the HDF libraries| i bnf df -i nst. a,l i bdf-i nst.a,libz. a,
and | i bj peg. a, and the Pablo Trace libraries| i bPabl oTr aceExt . a and
| i bPabl oTr ace. a,

* execute your code to produce an SDDF tracefile,

* if Runtime Tracing was used,
- run CreateHDFRecords on the trace file to produce a second SDDF file,
- run HDFStatsT ables on the second SDDF file

* if Summary tracing was used,
- run HDFStatsT ables on the original SDDF tracefile

Next an example is presented to illustrate how to modify, compile, and link a C language program
that will produce atrace file on execution and how to use the CreateHDFRecords and
HDFStatsTables utilities to produce statistical tables.

The following is an example of the C language program prior to modifying it for Pablo HDF
tracing. Thisprogramisgr _ex1. ¢ provided with the HDF test suite.

#i ncl ude "hdf. h"

#i nclude "nfgr.h"

#define X_LENGTH 5
#define Y_LENGTH 10

mai n()

{

int32 gr_id, ri_id, file_id, status;
i nt 32 di nmsi zes[2], nconp, il;

/* Create and open the file. */
file_id = Hopen("Exanpl el. hdf", DFACC_CREATE, O0);

/* Initiate the GRinterface. */
gr id = CRstart(file_id);

/* Define the nunber of conponents and di nensions of the inmage. */

nconp = 2;

il = MFGR_I NTERLACE PI XEL;
di nsi zes[0] = X_LENGTH;

di nsi zes[1] = Y_LENGTH;

/* Create the image array. */
ri_id = GRcreate(gr_id, "Inmage_array_ 1", nconp, DFNT_INT16, il,
di nsi zes) ;

/* Term nate access to the inmage array. */
status = GRendaccess(gr_id);

/* Term nate access to the GRinterface and close the file */
status = GRend(ri _id);

/* Close the file. */
status = Hclose(file_id);

4.1 Modifying Your Code

Suppose we wish to perform Runtime Tracing of the GR and H categories of HDF procedures used
when this program is executed with the trace output going to thefilegr _ex1. trace.

The file Pr ocMasks. h should be included and acall to HDFi ni t Tr ace should be inserted
before callsto any HDF procedures. Because the GR, DA and H categories of procedures areto be
traced, the value of the pr ocMask argument should be GR_mask + DA mask + H_mask.
The value of the third argument should be 1 for Runtime Tracing. A call to HDFendTrace must be
inserted prior to exiting the program. These modifications produce the following program.

10

#i ncl ude "hdf. h"
#i nclude "nfgr.h"
#i ncl ude "ProcMasks. h" [* define Pablo HDF masks */

#define X_LENGTH 5
#define Y_LENGTH 10

mai n()

int32 gr_id, ri_id, file_id, status;
i nt 32 di nmsi zes[2], nconp, il;

/* Initialize Pabl o HDF Tracing */

HDFi nit Trace("gr_exl.trace", GR nmask + DA mask + Hmask , 1);
/* Create and open the file. */

file_id = Hopen("Exanpl el. hdf", DFACC_CREATE, O0);

/* Initiate the GR interface. */

gr id = CRstart(file_id);

/* Define the nunber of conponents and di nensions of the inmage. */
nconp = 2;

il = MFGR_I NTERLACE PI XEL;

di nsi zes[0] = X_LENGTH;

di nsi zes[1] = Y_LENGTH;

/* Create the image array. */
ri_id = GRcreate(gr_id, "Inmage_array_ 1", nconp, DFNT_INT16, il,
di nsi zes) ;

/* Term nate access to the inmage array. */
status = GRendaccess(gr_id);

/* Term nate access to the GRinterface and close the file */
status = GRend(ri _id);

/* Close the file. */
status = Hclose(file_id);

/* End Pabl o HDF Tracing */
HDFendTr ace() ;

4.2 Compiling Your Code
If the directory where HDF isinstalled is<hdf Di r > to compile the program, the command

cc —c -O gr_ex1l.c -l <hdfDir>/include

can be used to produce the object file gr _ex1. o.

11

4.3 Linking Your Code

If the directory where HDF isinstalled is<hdf Di r > and the directory containing the Pablo Trace
software is<pabl oDi r >, the command

cc gr_exl.o —L<hdfDir>/lib —L<pabloDir>/1lib -Infsd-inst \
-ldf-inst —-lz —ljpeg -1 Pabl oTraceExt -I|Pabl oTrace —o gr_exl1l

can be used to produce an executable named gr _ex1. Additional libraries may be required
depending on your installation.

4.4 Executing Your Program
The command gr _ex1 will produce the SDDF tracefilegr _ex1. trace.

4.5 Obtaining Statistical Tables
First run CreateHDFRecordsongr _ex1. t r ace to produce another SDDF file.

CreateHDFRecords gr_ex1.trace

In this example, the default output file pabl oHDF. bi n isproduced. Thefile
pabl oHDF. bi n. map isalso produced. The . map file contains the following:

Pablo I D to HDF Nanme mappi ngs:

1 Image_array_1
2 Exanpl el. hdf

Next run HDFStatsTables on the file pabl oHDF. bi n to produce the output tables. These will be
written to standard output.

HDFStatsT ables pabloHDF.bin

The tables obtained in this case are given below. Thetiming information will vary depending on
the machine.

Note that the command
HDFStatsTables —hdfID 1 pabl oHDF. bi n

would print tables with information restricted to operationsinvolving | mage_array_1.

12

Gneral HF Sunmary | nf ornati on

Trace Fle: pabloHF bin

Frst HF Function called at 0.04 seconds
Last HIF Function called at 0. 10 seconds

Approxi nat e execution tine on 1 nodes 0.10 seconds
Approxi nate val | -cl ock tine 0. 10 seconds

Total tine spent in HF procedures 0.06 seconds
Fercent execution tine spent in HI procedures 58 62
Nuner of HIF procedure call's

General HF Activity

This tabl e sunmari zes the howtine is spent in each of the HOF procedures. It contains the followng infornation.

- Inclusive Duration, the total tine spent in the procedure.

- Exclusive Duration, the tine spent in the procedure excluding |Ooperations and calls to other traced procedures.
- Total Nunber of Sandard | Ooperations perforned by the procedure and Total Tine Spent doi ng these operations

- Total Nunber of Gils by the procedure to MA I Ofunctions and Total Tine spent in these functions

- Total Nunfer of Gils by the procedure to other HIF routines and Total Tine spent in these routines

Note: Al tines are neasured in seconds

| | Inclusive | Exclusive | Sandard 1O | MA 10 | Qher HF
Procedure | NGlls| Doration | Duration |----------------------- [=--mmmmmm e [=---mmmmmm e

| | Tire | Tne | NGs | Total Tine | NGlls| Tota Tire | NGlIs | Total Tine

+ + + + + + + -+ -+
Hl ose | 1] 0.03 | 0.00 | 6 | 0.03 | 0| 0.00 | 2| 0.00
-------------- e A Jupupup
Hendaccess | 2| 0.00 | 0.00 | 0| 0.00 | 0| 0.00 | 0] 0.00
-------------- e Sy
Hind | 8| 0.00 | 0.00 | 0] 0.00 | 0| 0.00 | 0] 0.00
-------------- Sy
Hyetfilevers' | 1] 0.00 | 0.00 | 0| 0.00 | 0| 0.00 | 0] 0.00
-------------- Ay
Hyetlibversi’ | 2| 0.00 | 0.00 | 0| 0.00 | 0] 0.00 | 0] 0.00
-------------- Sy
Hew ef | 1] 0.00 | 0.00 | 0] 0.00 | 0| 0.00 | 0] 0.00
-------------- T Sy
Huntoer | 5| 0.00 | 0.00 | 0| 0.00 | 0| 0.00 | 0| 0.00
-------------- Sy
Hopen | 1] 0.03 | 0.00 | 6 | 0.03 | 0| 0.00 | 3] 0.00
-------------- Sy
Hutel enent | 2| 0.00 | 0.00 | 0] 0.00 | 0| 0.00 | 6 | 0.00
-------------- Sy
Fstartread | 6 | 0.00 | 0.00 | 0| 0.00 | 0| 0.00 | 6 | 0.00
-------------- Sy
Hstartwite | 2| 0.00 | 0.00 | 0| 0.00 | 0] 0.00 | 4] 0.00
-------------- Sy
Hrite | 2| 0.00 | 0.00 | 2| 0.00 | 0| 0.00 | 0] 0.00
-------------- T Sy
Hstartaccess | 8| 0.00 | 0.00 | 0| 0.00 | 0| 0.00 | 14 | 0.00
-------------- Sy
Hsetlength | 2| 0.00 | 0.00 | 0| 0.00 | 0| 0.00 | 0] 0.00
-------------- Sy
Hstart | 1] 0.00 | 0.00 | 0| 0.00 | 0| 0.00 | 0] 0.00
-------------- Sy
Hregister t' | 3 0.00 | 0.00 | 0| 0.00 | 0] 0.00 | 0] 0.00
-------------- Sy
Gltart | 1] 0.00 | 0.00 | 0| 0.00 | 0| 0.00 | 14 | 0.00
-------------- T Sy
Gend | 1] 0.00 | 0.00 | 0] 0.00 | 0| 0.00 | 0] 0.00
-------------- Sy
Qrreate | 1] 0.00 | 0.00 | 0| 0.00 | 0| 0.00 | 2| 0.00
-------------- Sy
Gendaccess | 1] 0.00 | 0.00 | 0| 0.00 | 0| 0.00 | 0] 0.00
-------------- Sy
Dicreate arr’ | 2| 0.00 | 0.00 | 0| 0.00 | 0| 0.00 | 0] 0.00
-------------- Sy
Ddestroy_ar’ | 2| 0.00 | 0.00 | 0| 0.00 | 0| 0.00 | 0] 0.00
-------------- Sy
Dset_elem | 2| 0.00 | 0.00 | 0| 0.00 | 0| 0.00 | 0] 0.00

' Indicates procedure nane i s truncated.

13

1/0O Qperation Gunt Sunmary

This table lists the nunber of |/Ooperations perforned wthin each of the HIF procedures.
Qily those procedures perfornming |/Ooperations are |isted.

P ocedure | Read | Wite | Asyn Read | Asyn Wite | Gpen | Qose | Seek | Wit | Qbher
+ + + + + + + + +
Hl ose | 0| 3] 0| 0| 0| 1] 2 0| 0
-------------- T
Hopen | 0| 3] 0| 0| 1] 0| 1] 0| 1
-------------- T e
Hvite | 0| 2| 0| 0| 0| 0| 0| 0] 0
-------------- T
Total s | 0| 8| 0| 0| 1] 1] 3] 0| 1

This tabl e sunmari zes the total tine in seconds spent performing I/Ooperations wthin each of the HIF procedures.
Qily those procedures performing |/Ooperations are |isted.

P ocedure | Read | Wite | Asyn Read | Asyn Wite | Gpen | Qose | Seek | Vit | Qher
+ + + + + + + + +
H! ose | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00
-------------- e e
Hopen | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00
-------------- T
Hvite | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
-------------- T
Total s | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00

Thi s tabl e summari zes the nunber of bytes transferred by the HIF procedures.
Qlly those procedures performing reads or wites are incl uded.

Procedure | Read | Wite | Asyn Read | Asyn Wite
-+ -+ -+ -+
Hl ose | 0] 199 | 0] 0
-------------- T
Hopen | 0] 202 | 0] 0
-------------- T
Hvite | 0| 107 | 0| 0
-------------- T
Total s | 0| 508 | 0| 0

14

5 A Fortran Language Example

The steps for obtaining trace information from a Fortran program are the same as those used to
obtain trace information from a C program. In this section, only the code modification step is
shown.

The following is an example of the Fortran language program prior to modifying it for Pablo HDF
tracing. The programisgr _ex1. f provided with the HDF test suite.

PROGRAM CREATE | MAGE ARRAY

integer*4 gr_id, ri_id, file_id, dinsizes(2), nconp, il
i nteger ngstart, ngcreat, ngendac, ngend, hopen, hcl ose
i nteger*4 X LENGTH, Y_LENGTH, status

paraneter (X _LENGTH = 5, Y_LENGIH = 10,
+ MFGR_| NTERLACE_PI XEL = 0)

C DFACC_CREATE and DFNT_I NT16 are defined in hdf.h.
i nt eger *4 DFACC_CREATE, DFNT_I NT16
par anet er (DFACC _CREATE = 4, DFNT_INT16 = 22)

C Create and open the file.
file_id = hopen("Exanpl el. hdf ", DFACC_CREATE, 0)
C Initiate the GR interface.
gr_id = ngstart(file_id)
C Defi ne the nunber of conponents and di mensions of the image array.
nconp = 2
il = MFGR_|I NTERLACE_PI XEL
di nsi zes(1) = Y_LENGIH
di nsi zes(2) = X _LENGTH
C Create the image array.
ri_id = ngcreat(gr_id, "Ex_array_1', nconp, DFNT_INT16, il
+ di nsi zes)
C Term nate access to the inage array.

status = ngendac(ri _id)

C Termi nate access to the GRinterface and close the file.
status = ngend(gr_id)

C Close the file.
status = hclose(file_id)
end

15

The following is the code after modifying it to do Runtime Tracing of GR, DA and H category of
HDF procedures. The trace output fileisgr _ex1. tr ace.

PROGRAM CREATE | MAGE ARRAY

c

I ncl ude HDF rmask definitions
i ncl ude "ProcMasks.inc"
integer*4 gr_id, ri_id, file_id, dinsizes(2), nconp, il
i nteger ngstart, ngcreat, ngendac, ngend, hopen, hcl ose
i nteger*4 X LENGTH, Y_LENGTH, status
paraneter (X _LENGTH = 5, Y_LENGIH = 10,
MFGR_| NTERLACE PI XEL = 0)
DFACC_CREATE and DFNT_I NT16 are defined in hdf.h.
i nt eger *4 DFACC_CREATE, DFNT_I NT16
par anet er (DFACC _CREATE = 4, DFNT_INT16 = 22)

Enabl e Pabl o HDF tracing of GR, DA and H class functions

call HDFinitTrace("gr_exl.trace", GRmask + Danask + Hmask, 1)
Create and open the file.

file_id = hopen("Exanpl el. hdf ", DFACC_CREATE, 0)

Initiate the GR interface.
gr_id = ngstart(file_id)

Defi ne the nunber of conponents and di mensions of the image array.
nconp = 2

il = MFGR_|I NTERLACE PI XEL

di nsi zes(1) = Y_LENGIH

di nsi zes(2) = X _LENGTH

Create the image array.
ri_id = ngcreat(gr_id, "Ex_array_1', nconp, DFNT_INT16, il
di nsi zes)

Termi nate access to the inage array.
status = ngendac(ri _id)

Termi nate access to the GRinterface and close the file.
status = ngend(gr_id)

Cose the file.
status = hclose(file_id)

end Pabl o HDF tracing

call HDFendTrace()
end

16

