Next: F Random Variable, Previous: Chi-squared Random Variable, Up: Functions and Variables for continuous distributions [Contents][Index]
Let \(X_1, X_2, ..., X_n\) be \(n\) independent normally distributed random variables with means \(\mu_k\) and unit variances. Then the random variable
$$ \sum_{k=1}^n X_k^2 $$has a noncentral \(\chi^2\) distribution. The number of degrees of freedom is \(n\), and the noncentrality parameter is defined by
$$ \sum_{k=1}^n \mu_k^2 $$Returns the value at \(x\) of the density function of a
noncentral
\(\chi^2\)
random
variable m4_noncentral_chi2(n,ncp), with \(n>0\) and noncentrality parameter \(ncp>=0\). To
make use of this function, write first load("distrib")
.
For \(x < 0\), the pdf is 0, and for \(x \ge 0\) the pdf is $$ f(x; n, \lambda) = {1\over 2}e^{-(x+\lambda)/2} \left(x\over \lambda\right)^{n/4-1/2}I_{{n\over 2} - 1}\left(\sqrt{n \lambda}\right) $$
Returns the value at x of the distribution function of a noncentral Chi-square random variable m4_noncentral_chi2(n,ncp), with \(n>0\) and noncentrality parameter \(ncp>=0\). To make use of this function, write first load("distrib")
.
Returns the q-quantile of a noncentral Chi-square random variable m4_noncentral_chi2(n,ncp), with \(n>0\) and noncentrality parameter \(ncp>=0\); in other words, this is the inverse of cdf_noncentral_chi2
. Argument q must be an element of \([0,1]\).
This function has no closed form and it is numerically computed.
Returns the mean of a noncentral Chi-square random variable m4_noncentral_chi2(n,ncp), with \(n>0\) and noncentrality parameter \(ncp>=0\).
The mean is $$ E[X] = n + \mu $$
where \(\mu\) is the noncentrality parameter ncp.
Returns the variance of a noncentral Chi-square random variable m4_noncentral_chi2(n,ncp), with \(n>0\) and noncentrality parameter \(ncp>=0\).
The variance is $$ V[X] = 2(n+2\mu) $$
where \(\mu\) is the noncentrality parameter ncp.
Returns the standard deviation of a noncentral Chi-square random variable m4_noncentral_chi2(n,ncp), with \(n>0\) and noncentrality parameter \(ncp>=0\).
The standard deviation is $$ D[X] = \sqrt{2(n+2\mu)} $$
where \(\mu\) is the noncentrality parameter ncp.
Returns the skewness coefficient of a noncentral Chi-square random variable m4_noncentral_chi2(n,ncp), with \(n>0\) and noncentrality parameter \(ncp>=0\).
The skewness coefficient is $$ SK[X] = {2^{3/2}(n+3\mu) \over (n+2\mu)^{3/2}} $$
where \(\mu\) is the noncentrality parameter ncp.
Returns the kurtosis coefficient of a noncentral Chi-square random variable m4_noncentral_chi2(n,ncp), with \(n>0\) and noncentrality parameter \(ncp>=0\).
The kurtosis coefficient is $$ KU[X] = {12(n+4\mu)\over (2+2\mu)^2} $$
where \(\mu\) is the noncentrality parameter ncp.
Returns a noncentral Chi-square random variate m4_noncentral_chi2(n,ncp), with \(n>0\) and noncentrality parameter \(ncp>=0\). Calling random_noncentral_chi2
with a third argument m, a random sample of size m will be simulated.
To make use of this function, write first load("distrib")
.
Next: F Random Variable, Previous: Chi-squared Random Variable, Up: Functions and Variables for continuous distributions [Contents][Index]