
Module 5 1

Module 5: Use of Inheritance, Class Variables
and Protocols

This module reviews message sending and the method search mechanism, and

considers the effect of messages to self and super . This very important aspect of

using Smalltalk is illustrated with several small examples.

This module also explores three types of variable not yet considered — the class

variable, the class instance variable and the p o o l variable. The module goes on to

explore protocol typically implemented in classes, including ‘instance creation’,

‘class initialization’ and ‘examples’. These aspects are explored using class Date

and class Time as examples. Other examples are taken from classes

ScheduledWindow and FileBrowser.

Module 5: Use of Inheritance, Class Variables and Protocols............................1
5.1. Methods revisited...2
5.2. Review of Message Sending...2
5.3. Messages to self and super..2
5.4. An Example of Inheritance...4
5.5. Summary..6
5.6. Browsing a Class Hierarchy..6
5.7. Class Variables...7

5.7.1. ScheduledWindow..9
5.7.2. FileBrowser...9

5.8. Class Instance Variables...9
5.9. Pool Variables..10
5.10. Class Protocol...12

© Trevor Hopkins and Bernard Horan, 1994

Module 5 2

5.1. Methods revisited

A m e t h o d describes how an object will respond to a message. It is made up of a

message pattern and a sequence of expressions (separated by full stops). The

names of arguments in the message pattern are accessible within the method.

Temporary variables may also be used — they must be declared at the beginning

of the method (just after the message pattern). Temporaries are initially nil , and

are forgotten after the end of the method evaluation. The pseudo–variables self

and super can also be used with methods to refer to the receiver itself. Once the

method has finished evaluating, an answer is returned to the sender of the

message. By default, the object returned is the receiver itself (i.e. self).

However, other objects can be returned by use of a return expression — an

expression preceded by an “up–arrow” (‘^’). The return expression must be the

last expression evaluated in a method.

5.2. Review of Message Sending

When a message is sent, the methods in the receiver’s class are searched for one

with a matching selector. If none is found, the methods in that class’s superclass

are searched. The search continues upwards until a match is found, or the top of

the hierarchy is reached. (The superclass of Object is nil .) If a match is made, the

corresponding method is evaluated. This will probably cause further messages to

be sent.

If no match is found during the search, the message doesNotUnderstand: is sent

to the receiver. The argument is the offending message. A method with selector

doesNotUnderstand: is implemented in the instance protocol of Object, which

causes an error message to be displayed in a Notifier.

5.3. Messages to self and super

When a method contains an expression that causes a message to be sent to self,

the search for the corresponding method starts in the class of the instance

regardless of which class contained the method containing self. It is just as if

some other object had sent the message — the search starts exactly as before.

The pseudo–variable super is also available for use within a method. It also

refers to the receiver of the message (just like self). However, the search for the

method does n o t start in the receiver’s class. Instead, it starts in the superclass of

the class in which the method using super is located. This allows methods to

© Trevor Hopkins and Bernard Horan, 1994

Module 5 3

access other methods defined in classes further up the hierarchy, even if they

have been overr idden in subclasses.

Ex 5.1: Type in the class descriptions and methods given below.

class One class Three
superclass Object superclass Two
instance
variables

none instance
variables

none

class variables none class variables none
pool dictionaries none pool dictionaries none
class category Messages-example class category Messages-example
message protocol tests message protocol tests

result1
^self test

result2
^self result1

test
^1

result3
^super test

class Two class Four
superclass One superclass Three
instance
variables

none instance
variables

none

class variables none class variables none
pool dictionaries none pool dictionaries none
class category Messages-example class category Messages-example
message protocol tests message protocol tests

test
^2

test
^4

Evaluate the following expressions, one at a time:

| ex1 |
ex1 := One new.
ex1 test.

| ex1 |
ex1 := One new.
ex1 result1.

| ex2 |
ex2 := Two new.
ex2 test.

| ex2 |
ex2 := Two new.
ex2 result1

Explain what happens.

© Trevor Hopkins and Bernard Horan, 1994

Module 5 4

Ex 5.2: Also, explain what happens with each of the following expressions (create the
appropriate temporary variables, and evaluate each test and result expression in
isolation):

ex3 := Three new.
ex4 := Four new.
ex3 test.
ex4 result1.
ex3 result2.
ex4 result2.
ex3 result3.
ex4 result3

These examples are from the “Blue Book”, pages 62–66.

Ex 5.3: Augment the methods with extra expressions that write to the System Transcript.

5.4. An Example of Inheritance

In module 3 we introduced the class SpendingHistory as a simplistic model of a

person’s spending habits. Suppose we also want a class that is a more complete

model of a person’s overall finances — one that includes i n c o m e. Rather than

develop a class from scratch we can subclass the existing SpendingHistory class,

and consequently inherit both its behaviour and data structure. The class

description of the new subclass, called FinancialHistory, is specified below:

SpendingHistory subclass: #FinancialHistory
instanceVariableNames: 'incomes'
classVariableNames: ''
poolDictionaries: ''
category: 'Financial Tools'

Add a new class category called ‘Financial Tools’ and edit the class template so

that it appears as above. The class description introduces one extra instance

variable incomes. Select accept from the <operate> menu.

The class FinancialHistory inherits the instance variables of its superclass

SpendingHistory (i.e. cashOnHand and expenditures) and also its instance and

class methods. Hence, there is no need to create an additional instance creation

method, it’s inherited. However, we do have to create a method

setInitialBalance:, which corresponds to the message sent in the initialBalance:

instance creation method; this appears below:

setInitialBalance: anAmount
super setInitialBalance: anAmount.
incomes := Dictionary new.

© Trevor Hopkins and Bernard Horan, 1994

Module 5 5

This method uses the pseudo–variable super as the receiver of the message

setInitialBalance:. The consequence of sending this message is that the method

setInitialBalance: in class SpendingHistory is evaluated, i.e. cashOnHand refers to

amount , and expenditure refers to a new empty Dictionary. The only additional

operation provided by the method above is that incomes refers to another new

empty Dictionary. You should add this method to instance protocol private of

class FinancialHistory.

Repeat the above for method totalReceivedFor: in protocol inquiries, for method

receive:for: in protocol transactions and for method printOn: in protocol printing.

The code is below:

totalReceivedFor: reason
"return the amount received from reason. Answer
0 if reason is not used for incomes"

^(incomes includesKey: reason)
ifTrue: [incomes at: reason]
ifFalse: [0]

receive: anAmount for: reason
"Receive anAmount for a reason and increase the cashOnHand"

incomes
at: reason
put: (self totalReceivedFor: reason) + anAmount.

cashOnHand := cashOnHand + anAmount.

printOn: aStream
"print a suitable representation of myself on aStream"

super printOn: aStream.
aStream space.
incomes keysAndValuesDo: [:reason :amount |

aStream cr.
reason printOn: aStream.
aStream tab.
amount printOn: aStream]

Note how the last method printOn: inherits from the superclass, so that all the

programmer has to add are the message sends necessary to print out details of

income.

To test the new class, type the expressions shown below in a Workspace. Select

and evaluate the code using print it1.

1Note that this example uses cascaded expressions.

© Trevor Hopkins and Bernard Horan, 1994

Module 5 6

| spendingHistory |
spendingHistory := FinancialHistory initialBalance: 800.
spendingHistory spend: 220 on: 'rent';

spend: 30 on: 'food';
spend: 45 on: 'drink';
spend: 20 on: 'petrol';
receive: 300 for: 'salary';
receive: 50 for: 'expenses';
receive: 50 for: 'overtime'.

spendingHistory

Ex 5.4: Experiment with the class FinancialHistory, perhaps extending it with extra
expressions that write to the System Transcript.

5.5. Summary

To summarise, classes can inherit properties from other classes; this process is

repeated to form a “tree” of classes, rooted at Object.

• As stated above, a subclass inherits properties from its superclass.

• Subclasses are used to ref ine the functionality of the superclass, for either

the external protocol or the internal implementation.

• Superclasses which should n o t themselves have direct instances are

known as abstract superclasses. They are intended to support a partial

implementation of features which are completed (differently) in

subclasses.

• Each class is a (possibly indirect) subclass of class Object.

5.6. Browsing a Class Hierarchy

We saw in module 3 that the <operate> menu available in the Class Names pane

also has a spawn hierarchy option. This option creates a Hierarchy Browser on

all classes in the hierarchy of the selected class (see figure 5.1). A Hierarchy

Browser provides the same information access, viewing and editing capabilities

as a System Browser, except the information available is for a specified class and

its superclasses and subclasses. This is a convenient way of browsing a “vertical

slice” of the hierarchy. (Note how the structure of the class hierarchy is reflected

in the format of the list of class names.)

A Hierarchy Browser can also be created by evaluating an expression. For

example, a Hierarchy Browser that includes class Point can be opened using:

HierarchyBrowser openHierarchyBrowserFrom:
(Browser new onClass: Point)

© Trevor Hopkins and Bernard Horan, 1994

Module 5 7

Ex 5.5: Open a Hierarchy Browser on class FinancialHistory.

Figure 5.1: A Hierarchy Browser

5.7. Class Variables

We have already seen one type of shared variable in Smalltalk — the global

variable. Another type of shared variable is the class variable. This is accessible by

all instances of the class in which the variable is defined or any of its subclasses.

Typical uses of class variables are:

• “Constant” values used by all instances of the class and its subclasses, but

which might need to be changed occasionally.

• Private communication between instances.

In general, shared variables provide another mechanism for communication (as

well as message passing). The over–use of shared variables is frequently an

indication that a solution has not been well designed.

For example, class Date has five class variables, which are declared in the class

definition as follows:

© Trevor Hopkins and Bernard Horan, 1994

Module 5 8

Magnitude subclass: #Date
instanceVariableNames: 'day year'
classVariableNames: 'DaysInMonth FirstDayOfMonth MonthNames

SecondsInDay WeekDayNames'
poolDictionaries: ''
category: 'Magnitude-General'

The instance variables (day, year) change with each instance, so they can only be

accessed directly by the same instance. The class variables, however, keep the

same values across instances. So when an instance of Date wants to access the

Array of Integers referenced by the DaysInMonth variable, for example, it does not

have to send a message to itself. It can use the variable in its methods just as

naturally as it would use an instance variable. Objects that are not in the

inheritance chain would have to query Date for the information, for example

sending it the message nameOfMonth: (see figure 5.2).

Figure 5.2: The class variable DaysInMonth
holds on to a constant

The initial value of a class variable is usually assigned in a class method

(normally named initialize) and the corresponding message is typically sent as the

final act of creating a class.

© Trevor Hopkins and Bernard Horan, 1994

Module 5 9

Ex 5.6: Browse the class protocol of Date. Try some examples (e.g. Date today) .

Ex 5.7: Also explore the instance protocol of Date. Try some examples, including comparing
and arithmetic.

Ex 5.8: Create a new class protocol called ‘examples’. Install some of your examples there.
Remember to document your examples in method comments!

There are a number of examples of the use of class variables to control the

appearance and behaviour of the VisualWorks user interface. Here we describe

three of them.

5.7.1. ScheduledWindow

By default, VisualWorks will allow you to choose where a new window is

positioned. If you always want the window manager to choose where it goes,

evaluate1

ScheduledWindow promptForOpen: false.

Ex 5.9: What is the name of the class variable that controls where a new window is
positioned?

5.7.2. FileBrowser

The FileBrowser was described in module 3. It’s possible to specify an initial “file

pattern” (held by the class variable DefaultPattern) for retrieving the file name list

by sending the message defaultPattern: to the class FileBrowser, supplying the

(argument) pattern in the form of a string.

Ex 5.10: Set the default file pattern of the FileBrowser so that, when opened, the file list
contains the contents of the current directory. Hint : remember the use of
“wildcards”.

5.8. Class Instance Variables

The use of class instance variables is little understood, mainly because there are

few examples of their use in VisualWorks. As its name suggests, a class instance

variable is an instance variable for a class. At first this may seem a little

confusing, but you should remember that every object is an instance of some

class, thus every class is also an instance of some class (called its metaclass). We

have seen earlier that instance variables are inherited by classes, similarly, class

instance variables are inherited by metaclasses.

It’s important to distinguish between the use of a class variable and a class

instance variable. For example, suppose class Persian inherits from class Cat. If

Cat has a class variable, then Persian has the same class variable, i.e. if an

1Note that this user preference may be controlled via the Settings Tool, described in module 2.

© Trevor Hopkins and Bernard Horan, 1994

Module 5 10

instance of Persian modifies it, then instances of all subclasses of Cat will refer to

that new value.

On the other hand, if Cat has a class instance variable, then all subclasses of Cat

(including Persian) have their own copy of that variable.

Although there are not many examples of the use of class instance variables in

VisualWorks, there is one which is a good example: class UILookPolicy. This class

is an abstract superclass for classes that emulate the “look–and–feel” of various

window managers; its subclasses provide specific emulation for Macintosh,

Windows, Motif, etc. It introduces three class instance variables: systemAttributes,

systemWidgetAttributes and useSystemFontOnWidgets. Each of its subclasses

initialize these variables in their respective class initialize methods1.

Ex 5.11: Open a Hierarchy Browser on class UILookPolicy. Browse references to the class
instance variables mentioned above. Where are they initialised?

Ex 5.12: Open a Browser on all those classes that contain class instance variables. Hint: The
following code returns true if the receiver has a class instance variable.

aClass class instVarNames isEmpty not

5.9. Pool Variables

A pool variable is a variable whose scope is a defined subset of classes. Pool

variables are stored in pool dictionaries, instances of PoolDictionary — collections

of name⁄value associations. The variables in a pool dictionary can be made

accessible to any class by declaring the pool dictionary in the pool dictionary list

of the class definition. Smalltalk, the dictionary of global variables, is itself a pool

dictionary that is globally accessible. The class variables of a class are also stored

in a pool dictionary that is accessible to the class, its subclass, and instances of the

same. However, unlike class variables, pool variables can be referenced by other

unrelated classes.

The purpose of a pool dictionary is to provide quick access to the contents of the

dictionary, bypassing the usual dictionary look–up mechanism. One common

use of pool variables is as a means of providing application–specific constants.

For example, the pool dictionary TextConstants is shared by all classes that deal

with the display of text (including classes Text, ParagraphEditor and

ComposedText). It includes variables referring to basic character constants,

providing the mapping from characters such as <tab>, <CR>, <space>, etc. to

1Note that the variables can only be accessed by class methods.

© Trevor Hopkins and Bernard Horan, 1994

Module 5 11

their ASCII equivalents, allowing unprintable ASCII characters to be referenced

by name.

For example, class Text declares the pool dictionary TextConstants in its class

definition:

CharacterArray subclass: #Text
instanceVariableNames: 'string runs'
classVariableNames: ''
poolDictionaries: 'TextConstants'
category: 'Collections-Text'

The keys of the pool dictionary are referenced within Text methods as if they

were global or class variables (figure 5.3).

Ex 5.13: Inspect the pool dictionary TextConstants.

A new pool dictionary may be created by declaring the dictionary as a global

variable. Pool variables may then be added to the dictionary using the message

at: put:. For example:

Smalltalk at: #ExamplePoolDictionary put: PoolDictionary new.

(This creates a new global variable named ExamplePoolDictionary that refers to a

new instance of PoolDictionary.)

ExamplePoolDictionary at: #ExamplePoolVariable put: someObject

(This creates and adds a new pool variable named ExamplePoolVariable to the

dictionary ExamplePoolDictionary.)

© Trevor Hopkins and Bernard Horan, 1994

Module 5 12

Figure 5.3: The pool variable DefaultTextStyle referenced
in the method displayOn:at: in class Text

5.10. Class Protocol

When constructing a class, it’s often difficult to arrive at a consistent naming

convention for class protocols. If you browse the VisualWorks image you will

notice that some protocols become familiar. They are described below:

instance creation This very important protocol is very common. New

instance creation methods to suit subclasses are

frequently defined, in order to (for example) initialize

the new instance appropriately. Examples include

those to create an instance from data in a stream (e.g.

readFrom:).

class

initialization

When a class has class variables, a class method (by

convention, initialize) is required to set up the initial

(or default) values of the variables.

© Trevor Hopkins and Bernard Horan, 1994

Module 5 13

examples Helpful examples to explain the operation of a class are

often provided. This is good practice.

documentation Class methods solely for documentation are sometimes

used. Generally, the class comment is a better place for

this information. The method guideToDivision in class

SmallInteger is an example of a class method provided

solely as documentation (the documentation is in

double–quotes and typically the last line of the method

contains the expression ^self error: 'comment only')

accessing Class methods to access class variables.

inquiries General inquiries about information the class

encapsulates are provided by many class methods. The

method nameOfMonth: in class Date is an example

(figure 5.2).

instance

management

A class may wish to provide some control over its

instances, such as restricting the number or enforcing

an ordering. The method currentWindow in class

ScheduledWindow is an example.

private Methods not for general use, provided to support the

above protocols.

Ex 5.14: Explore class Time. This is a subclass of Magnitude. Note the class initialization and
general enquires methods, and how they use the class variables. Try Time now.

© Trevor Hopkins and Bernard Horan, 1994

