
Module 3 1

Module 3: Introduction to Application
Development

This module introduces the System Browser, illustrating the way in which it

may be used to examine and modify existing code within the image, and create

new methods and classes. This will be illustrated by a number of worked

examples, together with some exercises.

The File Browser will also be introduced at this point, in order to allow existing

applications to be “filed–in” to VisualWorks.

This module additionally illustrates some of the other types of Browsers that can

be “spawned” to view the image in different ways and also explores some of the

functions available from the pop–up menus.

Additionally, we conclude the description of the options available from the

Launcher that are not covered elsewhere.

Module 3: Introduction to Application Development.......................................1
3.1. The System Browser...3

3.1.1. Class Categories..4
3.1.2. Class Names..4
3.1.3. Message Categories..4
3.1.4. Message Selectors...5

3.2. Example: Browsing the Implementation of an Existing Method.........5
3.3. Defining Methods...6
3.4. Example: Creating a new Method...6
3.5. Defining Classes..7
3.6. Example: Adding a new “Application”..8
3.7. Saving Your Code...10
3.8. The File Browser...11

3.8.1. The Upper Pane..12
3.8.2. The Middle Pane..12
3.8.3. The Lower Pane..14
3.8.4. The auto read button...15

3.9. Other Kinds of Browsers...16
3.10. Spawning other Browsers...16
3.11. Alternative Ways of Opening Browsers..19
3.12. Browser Menus...21

3.12.1. Hardcopy..21
3.12.2. The Class Categories Menu..21
3.12.3. The Class Names Menu...23
3.12.4. The Message Categories Menu..25
3.12.5. The Message Selectors Menu..27
3.12.6. The Text Pane Menu...28

3.13. Message–Set Browser...30

© Trevor Hopkins and Bernard Horan, 1994

Module 3 2

3.14. The Launcher...31
3.14.1. File...31
3.14.2. Browse..32
3.14.3. Tools...33
3.14.4. Changes..33

© Trevor Hopkins and Bernard Horan, 1994

Module 3 3

3.1. The System Browser

The System Browser is the primary user interface for entering code in

VisualWorks. It allows the user to:

• create and edit source code;

• perform in–line testing;

• format (pretty print) method source code;

• explain code;

• save (“file out”) source code;

• organise classes and methods;

• find the senders of, implementors of, and messages sent by a method;

• create⁄alter⁄remove classes;

• display class hierarchy;

• spawn special purpose Browsers,

many of these will be described in later modules.

The System Browser allows the user to inspect the message interface to any object

in the image, and to modify it if required. To open a System Browser, select the

All Classes item from the Browse menu on the Launcher1. More than one

System Browser can be open simultaneously.

The System Browser (figure 3.1) is made up of five panes and two buttons,

marked instance and class. From left to right, the top four panes are:

1Note that the menu item is preceded by an icon, a copy of which is present as one of the buttons below the menu
bar.

© Trevor Hopkins and Bernard Horan, 1994

Module 3 4

Figure 3.1: The System Browser

3.1.1. Class Categories

These are groups of classes that are categorised for the convenience of the user.

The order of the categories and the classes they contain is arbitrary and bears little

relationship to the VisualWorks class hierarchy. One of these categories may be

selected (by clicking the <select> mouse button). New categories may be added

using the add… item from the <operate> button menu. Categories may also be

r e m o v e d or r enamed (see later). The classes in the selected category are presented

in the next pane:

3.1.2. Class Names

Classes in the selected category are presented in this pane. One class may be

selected, causing categories of messages to be presented in the next pane.

Selecting a class causes the class definition to be displayed in the lower (text)

pane. Alternatively, a display of the part of the class hierarchy containing this

class, or a c o m m e n t about the functions of this class can be selected from the

<operate> button menu. Classes may also be r e m o v e d or r enamed.

3.1.3. Message Categories

These are the categories of messages which can be sent either to instances of the

selected class (instance button pressed) or to the class itself (class button

© Trevor Hopkins and Bernard Horan, 1994

Module 3 5

pressed). By default, the instance button is selected. The message categories are

also known as protocols. One of these protocols may be selected, causing all the

message selectors in this protocol to be presented in the right–most pane. The

<operate> button menu includes options to allow the user to add a new protocol,

or r e m o v e or r e n a m e an existing protocol.

3.1.4. Message Selectors

All the message selectors in the selected protocol are presented in this pane. One

of the selectors may be selected, causing its method (the code evaluated when

this message is received) to be shown in the lower (text) pane. The code can be

modified and re–inserted into the image if desired (see later). The source code for

the method displayed in the text pane is held on an external file (the “sources”

file — see module 2).

3.2. Example: Browsing the Implementation of an Existing Method

Try the following: Select the class category Magnitude–Numbers in the left–most

top pane, using the <select> mouse button. Select Number in the Class Names

pane. Select testing in the Protocol pane. Select the selector even in the Message

Selector pane.

The code displayed in the lower pane is evaluated when an instance of a Number

(or one of its subclasses) receives a message with the selector even . This code

returns true if the receiver is even, otherwise false. Note that it sends a message

to itself (self), using the selector \\ (modulo) with 2 as the argument.

Ex 3.1: Verify that the even method evaluates correctly by typing, selecting and
evaluating (using print it) the following expression in a Workspace:

42 even

Repeat the above test with other numbers.

Ex 3.2: Try the effect of the following options from the <operate> button menu in the Class
Names pane. First select Magnitude–Numbers (left–most pane). Select Number in
the Class Names pane. Select hierarchy from the Class Names pane <operate>
button menu. This will display a textual representation of the part of the
hierarchical structure of the classes in the image which includes Number in the
lower (text) pane.

You can see, for example, that classes Float, Fraction and Integer are all subclasses of
Number. Thus, the message even should be understood by instances of all of these
classes. Try:

4 even

17.91 even

(3/7) even

© Trevor Hopkins and Bernard Horan, 1994

Module 3 6

Also examine the definition and comment menu items from the <operate> button
menu.

3.3. Defining Methods

A new method can be defined from the Browser whenever a protocol has been

selected. If there are no protocols to select, one must be created by using the

add… command in the Message Categories pane <operate> menu. The

following template is provided by the Browser:

message selector and argument names
"comment stating purpose of message"

| temporary variable names |
statements

This is relatively straightforward to fill in. Any number of statements can be

placed in the statements section. There can be no more than 255 temporary

variables and arguments.

3.4. Example: Creating a new Method

A function not currently implemented by instances of class Number is the

“absolute difference” function. Here, we will add this functionality to Number.

Select Magnitude–Numbers, Number and arithmetic in the left–most three panes

in the System Browser. Do not select anything from the top right–most pane.

The lower (text) pane should display a “template” for new methods. Edit (using

the normal text editing conventions) the template, so that it appears as below.

diff: aNumber
"return the absolute difference between me and aNumber"
| temp |
temp := self - aNumber.
temp < 0

ifTrue: [^temp negated]
ifFalse: [^temp]

This method first calculates temp, which is the difference between the parameter

aNumber and the receiver (self). It then answers with either temp or a negated

version of temp, depending whether temp is negative. The new method can now

be compiled and added to the VisualWorks environment by selecting accept

from the <operate> button menu in the lower pane. Do this. Correct any errors

that have inadvertently crept in!

(The cancel option discards all the text just added to the text pane and restores it

to its earlier state.)

© Trevor Hopkins and Bernard Horan, 1994

Module 3 7

Ex 3.3: Test the functioning of the new method by typing and evaluating (print i t)
suitable expressions in a Workspace. For example, try:

42 diff: 17.

17 diff: 42.

-17 diff: -19.

10.15 diff: (3/7).

237846527938465 diff: 3456

Note that the addition you have made to your VisualWorks image will be there

permanently, until you choose to remove it. (This assumes that you save the

image eventually, of course!).

Ex 3.4 In fact, the implementation of diff: used here is not very good (although it works). A
better version is shown below.

diff: aNumber
"return the absolute difference between me and aNumber"
^ (self - aNumber) abs

This version eliminates the temporary variable, and uses the abs method, which

is already implemented for Number. This minimises the amount of code added

to the image to support this new functionality.

Ex 3.5: Modify your implementation of diff: by editing and accepting the text in the System
Browser. Verify that this has not changed the functionality of the method by
repeating the tests above. Note that there is no way in which the implementation
can be determined by the sender of the diff: message. You may like to look at the
implementation of the abs method in class ArithmeticValue .

3.5. Defining Classes

In much the same fashion as methods, class definitions can be added using the

Browser when a class category is selected. As with methods, if no appropriate

category exists then the add… option from the Class Categories pane <operate>

menu can be used to create one. The Browser provides the following template:

NameOfSuperclass subclass: #NameOfClass
instanceVariableNames: 'instVarName1 instVarName2'
classVariableNames: 'ClassVarName1 ClassVarName2'
poolDictionaries: ''
category: 'Category–Name'

Once again, this is easy to fill out. Remember to keep the ‘#’ symbol in front of

the class name, and also that class names should always begin with an uppercase

character.

Example:

© Trevor Hopkins and Bernard Horan, 1994

Module 3 8

Number subclass: #Fraction
instanceVariableNames: 'numerator denominator'
classVariableNames: ''
poolDictionaries: ''
category: 'Magnitude–Numbers'

3.6. Example: Adding a new “Application”

This example is an exercise in adding a (small) new “application”, based on

classes already available within the image. The example itself is adapted from the

“Orange Book”, chapter 17.

Here, we will construct a class corresponding to an individual’s “spending

history”. We will not be too concerned about the design, or the other classes

used. This is an exercise in effectively using the System Browser and compiler.

We will describe a new class SpendingHistory with several methods and instance

variables. We will also try out this class in a simple manner.

Ex 3.6: Use the add… item from the <operate> button menu in the Class Categories pane
(top left) of the System Browser. When prompted, choose a suitable name for the
category, such as ‘Spending’. This new class category will have no classes in it, as
yet. A template for the creation of new classes will be displayed in the lower pane
of the System Browser.

Ex 3.7: Edit the template (using the normal text editor conventions) so that it appears as
below.

Object subclass: #SpendingHistory
instanceVariableNames: 'cashOnHand expenditures'
classVariableNames: ''
poolDictionaries: ''
category: 'Spending'

This declares the new class SpendingHistory to be a subclass of Object. The new

class has two instance variables called cashOnHand and expenditures, and no

class variables. Select accept from the <operate> button menu. This creates the

new class SpendingHistory and permanently installs it in the image.

We now need to add some additional functionality to SpendingHistory, since at

the moment all instances of SpendingHistory will have exactly the same

functionality as instances of Object. First, we will add a method to the class

protocol to create new initialised instances of SpendingHistory.

Ex 3.8: Select the class button in the System Browser and select the add… item from the
<operate> button menu in the Message Categories pane. You will be prompted for
the name of a protocol; respond with ‘instance creation’. The method template will
appear in the lower window. Use the editing functions to create the initialBalance:
method as shown.

© Trevor Hopkins and Bernard Horan, 1994

Module 3 9

initialBalance: anAmount
^super new setInitialBalance: anAmount

Note that this method uses a method defined further up the class hierarchy

(new). Add the new method to the image using the accept item from the

<operate> button menu. This method uses a message selector (setInitialBalance:)

which is not yet defined, so you should select proceed when prompted with a

Confirmer.

We will now add instance protocol to class SpendingHistory.

Ex 3.9: Select the instance button in the System Browser. Create a new protocol (as
before) called ‘private’. Edit the template to add the setInitialBalance: method.
Accept this using the <operate> button menu item.

setInitialBalance: anAmount
"Initialize the instance variables;
cashOnHand is set to amount"

cashOnHand := anAmount.
expenditures := Dictionary new.

Ex 3.10: Repeat the above for method totalSpentOn: in protocol ‘inquiries’, for method
spend:on: in protocol ‘transactions’, and for method printOn: in protocol ‘printing’
(see below).

totalSpentOn: reason
"return the amount spent on reason. Answer
0 if reason is not used for expenditures"

(expenditures includesKey: reason)
ifTrue: [^expenditures at: reason]
ifFalse: [^0]

spend: anAmount on: reason
"Spend anAmount on reason, reducing the available cashOnHand"

expenditures
at: reason
put: (self totalSpentOn: reason) + anAmount.

cashOnHand := cashOnHand - anAmount.

© Trevor Hopkins and Bernard Horan, 1994

Module 3 10

printOn: aStream
"print a suitable representation of myself on aStream"

super printOn: aStream.
aStream space.
aStream nextPutAll: 'balance: '.
cashOnHand printOn: aStream.
expenditures keysAndValuesDo: [:reason :amount |

aStream cr.
reason printOn: aStream.
aStream tab.
amount printOn: aStream]

You can now create initialised instances of class SpendingHistory by evaluating

the expression:

SpendingHistory initialBalance: 600

Ex 3.11: To test the new class, type the expressions shown below in a Workspace. Select and
evaluate the code using print i t.

| spendingHistory |
spendingHistory := SpendingHistory initialBalance: 800.
spendingHistory spend: 220 on: 'rent'.
spendingHistory spend: 30 on: 'food'.
spendingHistory spend: 45 on: 'drink'.
spendingHistory spend: 20 on: 'petrol'

3.7. Saving Your Code

Each of the upper panes in the System Browser has a f i le out as… option on

the <operate> button menu. This option allows the user to produce a file

containing the source code for the selected category, class, protocol or method.

Ex 3.12 Select the category Spending in the Class Categories pane, and choose the
f i l e o u t a s … option from the <operate> button menu in that pane. You will be
prompted to complete a filename specification (see figure 3.2) ending in ‘.st’ (if
necessary the filename will be truncated to the constraints of your platform’s filing
system). Simply press the <CR> key. The cursor will indicate that a file is being
written to the disk.

Figure 3.2: Completing a Filename Specification

© Trevor Hopkins and Bernard Horan, 1994

Module 3 11

Ex 3.13 File out the diff: method you created earlier.

3.8. The File Browser

The File Browser provides browsing access to the operating system’s file

management facilities. It allows the user to:

• enumerate files by pattern;

• access information about files (e.g. creation date);

• access the contents of files;

• “file–in” existing source code.

• create, remove or rename files and directories;

• edit files;

Figure 3.3: The File Browser

© Trevor Hopkins and Bernard Horan, 1994

Module 3 12

The File Browser consists of three panes and one button (figure 3.3).

3.8.1. The Upper Pane

The upper pane permits a file or directory name to be specified. Parts of the

directory structure1 are separated by appropriate characters (e.g. ‘/’ for UNIX, ‘\’

for PC machines, and ‘:’ for the Macintosh). This pane is used as the initial access

point into the file system. Wildcards may be used in the specification of the file

or directory. An asterisk (‘*’) symbol may be used to substitute for any number of

characters, and a hash (‘#’) for an individual character. Note that the label of the

window reflects the currently selected file⁄directory.

The <operate> menu in the pane (figure 3.4) is similar to the standard text–

editing menu, with the additional option volumes… which displays a menu of

sub–directories in the root directory (UNIX); or currently available disk drives

(Macintosh and MS–Windows).

Figure 3.4: The <operate> menu available in the
upper pane of the File Browser

3.8.2. The Middle Pane

The middle pane normally contains an alphabetically sorted list of one or more

files or directories (e.g. the contents of a directory). One of the items from the list

may be selected using the <select> mouse button. Note that the contents of the

<operate> menu in this pane depends on whether a file, a directory, or no item is

selected.

1On the Macintosh the directory structure is replaced by folders. Broadly speaking, each folder on the Macintosh
is equivalent to a directory on the other platforms.

© Trevor Hopkins and Bernard Horan, 1994

Module 3 13

If a file or directory is selected then the <operate> menu appears as in figures 3.5

and 3.6 respectively.

Figures 3.5 & 3.6: The <operate> menu options available in the
middle pane of the File Browser

when a file or directory is selected (respectively)

There are a number of options common to both menus that apply to the selected

file⁄directory:

copy name Copies the path name of the selected file or directory so
that it may later be pasted.

rename as… Changes the name of the selected file⁄directory1. This may
cause the position of the file to change in the list of files. A
Prompter will appear requesting the new name, with the
old name as default.

remove… Deletes the selected file⁄directory, after prompting for user
confirmation.

spawn Opens a new File Browser in the selected directory, or
opens a File Editor (see later) on the selected file.

Those options only applicable to a selected f i le are as follows:

get info Displays information about the selected file in the lower
pane (e.g. creation date, modification date). You should
note that this option is replaced by get contents, when
the lower pane contains file information.

get contents Displays the contents of the selected file in the lower pane.

1On some platforms this may produce an error if you do not have permission to change the name of the file.

© Trevor Hopkins and Bernard Horan, 1994

Module 3 14

file in Assumes that the file contains Smalltalk code (e.g. that
has previously been filed out), retrieves the file contents,
reading and evaluating the text.

copy file to… Creates a new file after prompting the user for its name.
The original file remains selected. If the destination file
already exists then the user is prompted to try again (with
a different file name) or abort.

The options available when a directory is selected are as follows:

new pattern Copies and accepts the currently selected directory into the
upper pane and displays its contents in the middle pane.

add directory… Prompts the user for the name of a new directory, and
creates a new directory with that name as a sub–directory
of the selected directory.

add file… Prompts the user for the name of a new file, and creates a
new empty file with that name within the selected
directory.

3.8.3. The Lower Pane

The lower pane is where the contents of the selected file (or information about it)

may be displayed using the get contents (get info) option from the <operate>

button menu in the middle pane. The contents of a file may be edited using the

normal VisualWorks editing conventions.

The options available on the <operate> menu in this pane are dependent on the

selection in the middle pane. If a directory is selected then the pane will display

the contents of the directory (if any) and the menu will be similar to the usual

text editing menu.

If a file is selected in the middle pane and its contents are displayed in the lower

pane, then the <operate> menu (figure 3.7) contains the following extra options:

file it in Evaluates the text selection as if it were reading it from the

selected file.

save Writes the contents of the file to disk (e.g. after editing the file).

save as… Prompts the user for the name of a new file and then writes the

contents of the existing file to a file with that name.

cancel Ignores any edits made to the file since it was last saved, and

resets its contents.

© Trevor Hopkins and Bernard Horan, 1994

Module 3 15

spawn Opens a File Editor on the selected file with any changes that

have been made to it. Cancels any edits that have been made in

the original File List Browser.

Figure 3.7: The <operate> menu available from the lower pane of the
File Browser when a file is selected

3.8.4. The auto read button

The button is used in combination with the lower two panes, and indicates

whether or not the contents of selected file should be automatically displayed

(without recourse to the get contents option), rather than information about

the file.

Ex 3.14 Open a File Browser by selecting the Fi le L ist option from the Tools menu of the
Launcher1. View all files in the current directory by typing a ‘*’ in the top pane and
using the accept option from the <operate> button menu. As a shortcut to using the
menu, you may just press the <CR> key here.

Select the file visual.cha in the middle pane, and (if necessary) use the
get contents option from the <operate> button menu. The contents of the file
will be displayed in the lower window.

1Note that the menu item is preceded by an icon, a copy of which is present as one of the buttons below the menu
bar.

© Trevor Hopkins and Bernard Horan, 1994

Module 3 16

Note that all changes you have made to the image, as well as all code evaluated in
a Workspace, have been recorded in this file.

3.9. Other Kinds of Browsers

As we have already seen, the System Browser permits access to all classes and

methods in the image. Using the System Browser, we can view and modify any

method in the image, add and remove methods, as well as adding and removing

classes. The System Browser is the most generally useful way of exploring the

functionality associated with classes within the VisualWorks image.

During application development, however, it is frequently necessary to view

methods in several different (and possibly unrelated) classes, and it is often

convenient to be able to browse only a part of a class hierarchy. It is always

possible to open two (or more) System Browsers on the screen simultaneously

for this purpose; however, the System Browsers take up a lot of screen space and

the screen can rapidly become very cluttered and crowded.

To attempt to alleviate this problem, VisualWorks provides several other kinds

of Browsers, each of which permit access to only a limited amount of the image,

such as just one class, or even just one method. Although these kinds of

Browsers are limited in their access, they occupy less screen space, and are

sometimes useful for this purpose.

3.10. Spawning other Browsers

Each of the panes in the System Browser has a spawn option on the <operate>

menu. The <operate> menu available in the Class Names pane also has a

spawn hierarchy option. Each of these options causes a different kind of

Browser to be created, on a limited part of the class hierarchy.

Working from left to right across the System Browser, the spawn option on the

left–most pane (Class Categories) <operate> menu opens a Browser on only

those classes in the selected category — a Category Browser. Other classes are not

accessible (see figure 3.8).

Two spawn options are available from the <operate> menu of the Class Names

pane: spawn creates a Browser on only the selected class — a Class Browser, see

figure 3.9. (Other classes are not available.) Alternatively, spawn hierarchy

creates a Hierarchy Browser on all classes in the hierarchy of the selected class

(see module 5).

© Trevor Hopkins and Bernard Horan, 1994

Module 3 17

Figure 3.8: A Class Category Browser

Figure 3.9: A Class Browser

© Trevor Hopkins and Bernard Horan, 1994

Module 3 18

The spawn option from the <operate> menu of the Message Categories

(Protocols) pane creates a Browser on only the methods in the selected protocol

— a Protocol Browser (figure 3.10).

Figure 3.10: A Protocol Browser

In the Message Selectors <operate> menu, spawn creates a Browser on only the

selected method — a Method Browser (figure 3.11).

Figure 3.11: A Method Browser

Note that the underlying class structure is equally accessible and modifiable

through any of these Browsers (subject to the limitations of what can be located

with the particular Browser used). Also, the panes in each of these Browsers

© Trevor Hopkins and Bernard Horan, 1994

Module 3 19

have exactly the same <operate> button menu as the corresponding pane in the

System Browser.

Finally, it is important to be aware of two consequences of spawning Browsers. If

a new Browser is spawned from an existing Browser in which the method source

code has been modified but not “accepted”, then the original Browser reverts to

the original source code (as if the cancel option had been selected) and the new

Browser contains the modified code. Secondly, note that the consistency of the

representation presented to the user when multiple windows are in operation is

not automatically managed. Changes made to a class or category in one Browser

are not reflected in other Browsers until another selection is made, or the

update option from the Class Categories <operate> button menu is used.

3.11. Alternative Ways of Opening Browsers

Frequently, we will wish to browse on a particular class. Of course, we can always

do this by finding the class in the System Browser, but there are two alternatives.

The first is to use the Browse menu from the Launcher (figure 3.12). (You have

used this option before, to open a System Browser.) The menu also contains

other options, and the one that is of interest here is the Class Named…

option. When this option is selected the user is presented with a request for a

class. You may simply type the class name in full here, or, if you are unsure, use

the “wildcards” described earlier (figure 3.13). If the later approach is taken you

will be presented with a list of matching classes (figure 3.14), from which you

may only select one.

Figure 3.12: The Browse menu of the Launcher

© Trevor Hopkins and Bernard Horan, 1994

Module 3 20

Figure 3.13: Entering a class name

Figure 3.14: A Confirmer containing a list of classes matching the above

The other alternative is to open a Class Browser directly from a Workspace. This

can be done by sending the newOnClass: message to class Browser ; for example, a

Browser on class Point can be created by typing and evaluating the following

expression in a Workspace:

Browser newOnClass: Point

This is so useful that a shorthand way of opening a Class Browser is to send the

message browse to that class, or to send the message browse to any instance of

that class. So, alternative ways of creating a Browser on class Point would be:

Point browse.

(3@4) browse.

The Class Browsers created in this way are identical to those created when the

spawn option is used from the Class Names <operate> menu.

A complete System Browser can be opened using the expression:

Browser open

© Trevor Hopkins and Bernard Horan, 1994

Module 3 21

Ex 3.15: Experiment with creating various Category, Class, Protocol, and Method Browsers
from existing Browsers.

Ex 3.16: Experiment with creating various types of Browsers, by typing and evaluating
expressions as suggested above.

Ex 3.17: Browse the instance creation class methods of class Browser and try creating some
other kinds of Browsers using the messages found there.

Ex 3.18: Note how Browsers may be spawned from Browsers other than System Browsers.

Ex 3.19: Modify a method (non–destructively or reversibly!) in one Browser.

Ex 3.20: Verify that the changes are visible in other Browsers only after re–selection or the
use of the update menu option.

3.12. Browser Menus

Using the System Browser as an example we will consider each menu option

from the available <operate> menus. The Browsers that may be spawned from

the System Browser (or produced as a result of evaluating a message expression,

from a Workspace for example) all share these menus. Some of the options have

already been described, the remainder will be described here.

3.12.1. Hardcopy

Before we examine each of the <operate> menus in turn, let us first describe the

hardcopy option, since it is present in all the <operate> menus in the Browsers,

and many of the other text–based windows. This option produces a file

containing the source code for the selected method, protocol, class or category

and sends it to the printer. (The format of the file is similar to that produced by

the f i le out as… option, but doesn’t contain any special characters recognised

by the compiler — i.e. it may not be later filed–in.) After the operation has been

successfully completed a notification is written to the System Transcript.

3.12.2. The Class Categories Menu

The Class Categories menu comes in two guises, according to whether or not a

category is selected. Figure 3.15 shows the full menu, with those options always

available indicated by a ‘†’.

© Trevor Hopkins and Bernard Horan, 1994

Module 3 22

†

†

†

†

Figure 3.15: The Class Categories <operate> menu

rename as… The user is prompted to provide a new name for the
selected category. This option is often used when there is
a conflict between category names or when correcting a
typing mistake. All classes in the selected category are
modified accordingly. The operation fails if the user
provides a category name that already exists
(unfortunately, no feedback is given to the user in these
circumstances)!

remove… This option removes the selected category and the
classes it contains from the VisualWorks image. Not
recommended, unless you are sure you know what you
are doing — it is possible to remove classes which will
prevent any further work being carried out in this
image! The user is prompted to confirm the operation if
the category contains any classes.

edit all Prints the structure of all categories and their classes in
the lower text pane. The order of the categories is the
same as that in the class categories pane. By editing this
list the user may change category names, category
contents, and the order in which the categories will
appear. Although it is also possible to modify class
names, all such changes are ignored. The user must
select accept from the text pane <operate> menu to see
the result of any changes that have been made. This
option is seldom used, since other options exist by which
the same modifications may be (more safely) carried out.
Not recommended.

© Trevor Hopkins and Bernard Horan, 1994

Module 3 23

find class… The user is prompted to specify a class name (possibly
including the wildcards ‘*’ and ‘#’). The category
containing the specified class is selected in the category
pane and the class is selected in the class pane. This
mechanism is similar to that described earlier for
opening a Browser on a specified class, i.e. if more than
one class matches the specified name, then the user is
prompted to select the required class.

Ex 3.21: Rename the class category Spending as Finance using the rename as… menu
option

Ex 3.22: Undo the modification in exercise 3.21 using the edi t a l l option.

Ex 3.23: File out the class categories Spending and Financial Tools. Examine the files using
the File Editor .

Ex 3.24: Remove the class category Financial Tools.

Ex 3.25: File–in the category Financial Tools from the file–out you created in exercise 3.23.

Ex 3.26: Experiment with the find class… option.

3.12.3. The Class Names Menu

The Class Names menu (or “Class Menu”) is only available if a class is selected

(figure 3.16).

Figure 3.16: The Class menu

© Trevor Hopkins and Bernard Horan, 1994

Module 3 24

inst var refs… A menu is displayed listing the instance variables of
the class and its superclasses. (The variables in each
class are identified appropriately.) When the user
selects a variable name, a Message–Set Browser (see
later) is opened on the methods in which the selected
variable is referenced. For example, if the class
FinancialHistory is selected1, the inst var refs…
option produces a list of its instance variable names
(figure 3.17).

Figure 3.17: A list of instance variable names for the class
FinancialHistory

class var refs… Similar to above, except that the resulting menu
contains a list of the class variable names for the class
and its superclasses.

class refs This option opens a Message–Set Browser on all
those methods in which the class is referenced.

move to… The user is prompted for a category name (which
may be new or existing) into which to move the class.
The System Browser is updated accordingly.

rename as… The user is prompted to provide a new class name for
the selected class. If appropriate, a Message–Set
Browser is opened containing the methods in which
the class is currently referenced (using its old name);
if necessary these methods should be amended. We
recommend that you first check for references to this
class (using the class refs option above) and make
any necessary modifications before renaming the
class.

1Class FinancialHistory is introduced in module 5.

© Trevor Hopkins and Bernard Horan, 1994

Module 3 25

remove… The user is prompted to confirm this operation. It’s
easier to remove references to this class before you
remove the class itself!

Ex 3.27: Open a Browser which contains all methods referencing the class variable
DefaultForWindows in class LookPreferences.

Ex 3.28: Open a Browser which contains all methods which reference the class
LookPreferences.

Ex 3.29: Move the class SpendingHistory into the category called ‘Financial Tools’.

Ex 3.30: What will happen if you try to rename the class SpendingHistory as
‘ExpendituresHistory’? Go ahead and see if you are correct.

Ex 3.31: What will happen if you try to remove the class SpendingHistory? Go ahead and
see if you are correct. (This assumes that you didn’t rename the class in
exercise 3.30!)

3.12.4. The Message Categories Menu

The Message Categories menu (or “Protocols Menu”) is similar to the Class

Category menu since it has two guises, according to whether or not a protocol is

selected. Figure 3.18 shows the full menu, with those options always available

indicated with a ‘†’.

†

†

†

Figure 3.18: The Protocols Menu

rename as… Prompts the user for a new name for the selected
protocol, then updates the protocol list in the
Browser.

© Trevor Hopkins and Bernard Horan, 1994

Module 3 26

remove… After prompting the user for confirmation, this
option removes the protocol and the methods it
contains. However, there is no attempt to discover if
any other methods send messages corresponding to
the methods contained in the selected protocol you
are about to remove. (To determine all senders of a
given message, see the senders option from the
Message Selectors menu below.)

edit all Prints the structure of the protocols and the methods
they contain in the lower text pane. The order of the
protocols is the same as that in the protocol pane. By
editing this list the user may change protocol names,
protocol contents, and the order in which protocols
will appear. Although it is possible to modify
message selector names, all such changes are ignored.
The user must select accept from the text pane
<operate> menu to see the result of any changes that
have been made. This option is seldom used, since
other options exist by which the same modifications
may be (more safely) carried out. Not recommended.

find method… This option displays a list of the message selectors
provided by the selected class. The instance⁄class
switch on the Browser determines which group of
selectors is displayed in the menu. Selecting a selector
from the list causes its protocol to be selected in the
protocol pane, itself to be selected in the message
selectors pane, and its method to be displayed in the
lower text pane. For example, figure 3.19 shows the
list of selectors in class SpendingHistory.

Figure 3.19: The list of message selectors
 defined for class SpendingHistory

Ex 3.32: In class SpendingHistory, rename the protocol private as initialize-release.

Ex 3.33: Reverse the modification made in exercise 3.32, by using the edi t a l l menu option.

© Trevor Hopkins and Bernard Horan, 1994

Module 3 27

Ex 3.34: File–out the class protocol instance creation in class SpendingHistory. Examine the
file using the File Editor

Ex 3.35: Remove the class protocol instance creation from class SpendingHistory. File–in
the protocol from the file–out you created in exercise 3.34.

3.12.5. The Message Selectors Menu

The Message Selectors menu is only available if a message selector is selected

(figure 3.20).

Figure 3.20: The Message Selectors menu

The first three menu options are very useful in tracing message–sends1:

senders This option searches the VisualWorks image for all
methods in which the message selector is sent. A
Message–Set Browser is opened. If the selected message
selector is not sent by any method in the image, then
the user is presented with a “warning” Prompter.

implementors This option opens a Message–Set Browser on all classes
that implement a method corresponding to the
selected message selector.

messages… This option displays a menu of the messages sent in
the selected method. Selecting one of these messages
opens a Message–Set Browser on the implementors of
that message.

move to… The user is prompted for the name of the destination
protocol into which the selected method will be
moved. If a protocol of that name does not exist then it
is created. To copy the method to another class, the
user must include both the class name and the message
protocol, in the form ClassName>selector.

1See also later, for alternative ways of browsing the senders and implementors of a message.

© Trevor Hopkins and Bernard Horan, 1994

Module 3 28

remove… The method is deleted after confirmation from the
user. It’s advisable to ensure that there are no senders
of the message (using the senders option above)
before removing a method!

Ex 3.36: Select the message selector printOn: in class SpendingHistory. Open a Browser on all
senders of this message.

Ex 3.37: Whilst having the same message selected, open a Browser on all implementors of
printOn:.

Ex 3.38: Again from the same message, browse all implementors of keysAndValuesDo:.

3.12.6. The Text Pane Menu

The text pane menu (or “Code” menu) is always available, since the pane can

also be used as a workspace for experimentation (figure 3.21) .

Figure 3.21: The Code menu

format This option modifies the layout of the method so that it
adheres to the code indentation conventions. For
example, figures 3.22 and 3.23 display the original printOn:
method in class FinancialHistory before and after the use of
the format option respectively.

© Trevor Hopkins and Bernard Horan, 1994

Module 3 29

Figure 3.22: The printOn: method before formatting

Figure 3.23: The printOn: method after formatting

explain Used when a variable, literal or message selector is
selected, this option appends an “explanation” of the
selection. The explanation usually includes some code
which, when evaluated, opens a Browser on references to
the selection. For example, in figure 3.24 the Browser
contains an explanation of the instance variable incomes.

© Trevor Hopkins and Bernard Horan, 1994

Module 3 30

Figure 3.24: An “explanation” of the variable incomes

Ex 3.39: Ensure that the methods in classes SpendingHistory adhere to the code formatting
conventions.

Ex 3.40: “Explain” the message space in the method pictured above.

You can also find all senders and implementors of a message (respectively) by

evaluating expressions of the form:

Browser browseAllCallsOn: #printOn:

Browser browseAllImplementorsOf: #do:

You can find all references to a class by:

Browser browseAllCallsOn: (Smalltalk associationAt: #Array)

3.13. Message–Set Browser

A Message–Set Browser is a special kind of Browser that gives access to a

collection of methods with specific characteristics. For example, figure 3.25 shows

a Message–Set Browser containing all implementors of do:. You can see that the

upper pane contains a list of class–selector pairs corresponding to the label of the

Browser.

© Trevor Hopkins and Bernard Horan, 1994

Module 3 31

Figure 3.25: A Message–Set Browser

3.14. The Launcher

We have already described most of the operations available from the Launcher.

The following sections describe the remainder, and identify those options already

described.

3.14.1. File

The options available from the File menu (figure 3.26) are described below:

Collect Garbage collects objects in the image that are no longer
required (called garbage) and discards them, thus
removing them from memory. Although this
process occurs automatically at regular intervals,
you may want to use this option to discard objects
for a specific reason. The operation also writes a
message to the Transcript indicating how much
space remains.

Collect All
Garbage

performs a similar operation to above. In addition,
this operation searches for garbage in a memory
zone called PermSpace. Consult your User Guide
for more information on both options.

Settings opens a window in which various options can be
set. See module 2.

© Trevor Hopkins and Bernard Horan, 1994

Module 3 32

We have already described the Save As… option in module 2. There are two

other options for saving, Perm Save As… and Perm Undo As…. These

more advanced options provide a means of using PermSpace; consult your User

Guide for more information.

Figure 3.26: The File menu of the Launcher

You should also be familiar with the dialogue box that is produced when you

select the Exit VisualWorks… option from the Launcher (figure 3.27). This was

described in module 2.

Figure 3.27: The Exit VisualWorks… dialogue box

3.14.2. Browse

The Browsers menu of the Launcher (figure 3.28) contains five options. By now

you should be very familiar with the All Classes option. The

Class Named… option was described earlier The References To… and

Implementors Of… options provide the same functionality as the senders

and implementors options described earlier in this module. The remaining

option, Resources, is described later in the course.

© Trevor Hopkins and Bernard Horan, 1994

Module 3 33

Figure 3.28: The Browse menu of the Launcher

3.14.3. Tools

Four of the options available from the Tools menu (figure 3.29) have all been

described elsewhere, others are described later in the course. The remainder are

beyond the scope of this course.

Figure 3.29: The Tools menu of the Launcher

3.14.4. Changes

The options available from Changes menu of the Launcher are not described in

this course.

© Trevor Hopkins and Bernard Horan, 1994

