
Compiling Java for Embedded Systems

By Per Bothner (bothner@cygnus.com)

While a major factor in Java’s success is its use of portable bytecodes, we believe it cannot
become a mainstream programming language without mainstream implementation techniques.
Specifically, an optimizing, ahead-of-time compiler allows much better optimization along with
much faster application start-up times than with JIT translators. Cygnus Solutions is writing a Java
front-end for the GNU compiler, gcc, in order to translate Java bytecodes to machine code. This
uses a widely used, proven technology. In this paper, we discuss issues in implementing Java using
traditional compiler, linker, and debugging technology; particular emphasis is given to using Java
in embedded and limited memory environments.

1 JAVA IMPLEMENTATION

Java (see Bibliography for [JavaSpec] on page 15) has become popular because it
is a decent programming language, is buzzword-compliant (object-oriented and web-
enabled), and because it is implemented by compiling to portable bytecodes (see
Bibliography for [JavaVMSpec] on page 15). The traditional Java implementation model
is to compile Java source code into .class files containing machine-independent byte-
code instructions. These .class files are downloaded and interpreted by a browser or
some other Java “Virtual Machine” (VM). See the diagram in Figure 1 (below) for a
model of the traditional Java implementation.

Figure 1: Typical Java implementation

However, interpreting bytecodes makes Java program many times slower than
comparable C or C++ programs. One approach to improving this situation is “Just-In-
Time” (JIT) compilers. These dynamically translate bytecodes to machine code just
before a method is first executed.

This can provide substantial speed-up, but it is still slower than C or C++. There
are three main drawbacks with the JIT approach compared to conventional compilers:

• The compilation is done every time the application is executed, which
means start-up times are much worse than pre-compiled code.

• Since the JIT compiler has to run fast (it is run every time the application
is run), it cannot do any non-trivial optimization. Only simple register
allocation and peep-optimizations are practical. (Some have suggested that
JIT could potentially produce faster code than a stand-alone compiler,
since it can dynamically adjust to specific inputs and hardware. But the
need for quick re-compilation will make it very difficult to make JIT faster
in practice.)

• The JIT compiler must remain in (virtual) memory while the application is
executing. This memory may be quite costly in an embedded application.

 While JIT compilers have an important place in a Java system, for frequently used
applications it is better to use a more traditional “ahead-of-time” or batch compiler. While
many think of Java as primarily an internet/web language, others are interested in using
Java as an alternative to traditional languages such as C++, provided performance is
acceptable. For embedded applications, it makes much more sense to pre-compile the
Java program, especially if the program is to be in ROM.

 Cygnus is building a Java programming environment that is based on a
conventional compiler, linker, and debugger, using Java-enhanced versions of the existing
GNU programming tools. These have been ported to just about every chip in use
(including many chips only used in embedded systems), and so we will have a uniquely
portable Java system. See Figure 2 on page 3 for a model of the compilation process.

 Figure 2: Compiled Java

 2 ISSUES WITH EMBEDDED JAVA

 Sun’s motto for Java is “Write once, run anywhere”. As part of that, Sun has been
pushing Java as also suitable for embedded systems, announcing specifications for
“Embedded Java” and “Personal Java” specifications. The latter (just published at the
time of writing) is primarily a restricted library that a Java application can expect.

 “Embedded systems” covers a large spectrum from 4-bit chips with tens of bytes
of RAM, to 32- and 64-bit systems with megabytes of RAM. I believe it will be very
difficult to squeeze a reasonably complete implementation of Java into less than one MB.
(However, people have managed to squeeze a much reduced Java into credit-card-sized
“smart cards” with about 100kB.) In general, there is less memory available than in the
typical desktop environment where Java usually runs. Those designers that have been
leery of C++ because of performance concerns (perceived or real) will not embrace Java.
On the other hand, those that have been leery of C++ because of its complexity will find
Java easier to master.

 2.1 Advantages of Java

 Java has a number of advantages for embedded systems. Using classes to organize
the code enforces modularity, and encourages data abstraction. Java has many useful and
standardized classes (for graphics, networking, simple math and containers,
internationalization, files, and much more). This means a designer can count on having
these libraries on any (full) implementation of Java.

 Java programs are generally more portable than C or C++ programs:

• The size of integer, floats, and character is defined by the language.

• The order and precision of expression evaluation is defined.

• Initial values of fields are defined, and the languages require that local
variables be set before use in a way that the compiler can check.

In fact, the only major non-determinacy in Java is due to time-dependencies
between interacting threads. Safety-critical applications will find the following features
very useful:

• More disciplined use of pointers, called “references” instead, provides
“pointer safety” (no dangling references; all references are either null or
point to an actual object; de-referencing a null pointer raises an exception).

• Array indexing is checked, and an index out of bounds raises an exception.

• Using exceptions makes it easier to separate out the normal case from
error cases, and to handle the error in a disciplined manner.

 The portability of Java (including a portable binary format) means that an
application can run on many hardware platforms, with no porting effort (at least that’s the

theory).

 2.2 Code compactness

 It has been argued that even for ROM-based embedded systems (where portability
is not an issue), it still makes sense to use a bytecode-based implementation of Java, since
the bytecodes are supposedly more compact than native code. However, it is not at all
clear if that is really the case. The actual bytecode instructions of the Fib class (a program
to calculate Fibonacci numbers, which is discussed in the section, 5 Status, on page 14)
only take 134 bytes, while the compiled instructions for i86 and Sparc take 373 and 484
bytes respectively. (This is if we assume external classes are also pre-compiled;
otherwise, 417 and 540 bytes are needed, respectively.) However, there is quite a bit of
symbol table information necessary, bringing the actual size of the Fib.class file up to
1227 bytes. How much space will actually be used at run-time depends on how the
symbolic (reflective) information is represented - but it does take a fair bit of space. (Pre-
compiled code also needs space for the reflective data structure –about 520 bytes for this
example.) Out tentative conclusion is that the space advantage of bytecodes is minor at
best, whereas the speed penalty is major.

 2.3 Space for standard run-time

 In addition to the space needed for the user code, there is also a large chunk of
fixed code for the run-time environment. This includes code for the standard libraries
(such as java.lang), code for loading new classes, the garbage collector, and an
interpreter or just-in-time compiler.

 In a memory-tight environment, it is desirable to be able to leave out some of this
support code. For example, if there is no need for loading new classes at run-time, we can
leave out the code for reading class files, and interpreting (or JIT-compiling) bytecodes.
(If you have a dynamic loader, you could still down-load new classes, if you compile
them off-line.) Similarly, some embedded applications might not need support for Java’s
Abstract Windowing Toolkit, or networking, or decryption, while another might need
some or all of these.

 Depending on a conventional (static) linker to select only the code that is actually
needed does not work, since a Java class can be referenced using a run-time String
expression passed to the Class.forName method. If that feature is not used, then a
static linker can be used.

 The Java run-time needs to have access to the name and type of every field and
method of every class that is loaded. This is not needed for normal operation (especially
not when using precompiled methods); however, a program can examine this information
using the java.lang.reflect package. Furthermore, the Java Native Interface (JNI, a
standard ABI for interfacing between C/C++ and Java) works by looking up fields and
methods by name at run-time. Using the JNI thus requires extra run-time memory for

field and method information. Since the JNI is also quite slow, an embedded application
may prefer to use a lower-level (but less portable) Native Interface.

 Because applications and resources vary so widely, it is important to have a Java
VM/run-time than can be easily configured. Some applications may need access to
dynamically loaded classes, the Java Native Interface, reflection, and a large class library.
Other applications may need none of these, and cannot afford the space requirements of
those features. Different clients may also want different algorithms for garbage collection
or different thread implementations. This implies the need for a configuration utility, so
one can select the features one wants in a VM, much like one might need to configure
kernel options before building an operating system.

 2.4 Garbage collection

 Programmers used to traditional malloc/free-style heap management tend to be
skeptical about the efficiency of garbage collection. It is true that garbage collection
usually takes a significant toll on execution time, and can lead to large unpredictable
pauses. However, it is important to remember that is also an issue for manual heap
allocations using malloc and free. There are many very poorly written malloc/free
implementations in common use, just as there are inefficient implementations of garbage
collection.

 There are a number of incremental, parallel, or generational garbage collection
algorithms that provide performance as good or better than malloc/free . What is
difficult, however, is ensuring that pause times are bounded—i.e., a small limit on the
amount of time a new can take, even if garbage collection is triggered. The solution is to
make sure to do a little piece of garbage collection on each allocation. Unfortunately, the
only known algorithms that can handle hard-real time either require hardware assistance
or are very inefficient. However, “soft” real-time can be implemented at reasonable cost.

 3 COMPILING JAVA

 The core tool of Cygnus’s Java implementation is the compiler. This is jc1 , a
new gcc front-end (see Bibliography for [GCC] on page 15). This has similar structure
as existing front-ends (such as cc1plus , the C++ front-end), and shares most of the code
with them. The most unusual aspect of jc1 is that its “parser” reads either Java source
files or Java bytecode files. (The first release will only directly support bytecodes; parsing
Java source will be done by invoking Sun’s javac . A future version will provide an
integrated Java parser, largely for the sake of compilation speed.) In any case, it is
important that jc1 can read bytecodes, for the following reasons:
• It is the natural way to get declarations of external classes; in this respect, a Java

bytecode file is like a C++ pre-compiled header file.

• It is needed so we can support code produced from other tools that produce Java
bytecodes (such as the Kawa Scheme-to-Java-bytecode compiler; see Bibliography
for [Kawa] on page 15).

• Some libraries are (unfortunately) distributed as Java bytecodes without source.

 Much of the work of the compiler is the same whether we are compiling from
source code or from byte codes. For example emitting code to handle method invocation
is the same either way. When we compile from source, we need a parser, semantic
analysis, and error-checking. On the other hand, when parsing from bytecodes, we need to
extract higher-level information from the lower-level bytecodes, which we will discuss,
below, in 3.1 Transforming bytecodes.

 3.1 Transforming bytecodes

 This section describes how jc1 works.

 The executable content of a bytecode file contains a vector of bytecode
instructions for each (non-native) method. The bytecodes are instructions for an abstract
machine with some local variable registers and a stack used for expression evaluation.
(The first few local variables are initialized with the actual parameters.) Each local
variable or stack “slot” is a word big enough for either a 32-bit integer, a float, or an
object reference (pointer). (Two slots are used for 64-bits doubles and longs.) The slots
are not typed; i.e., at one point, a slot might contain an integer value, and, at another
point, the same slot might contain an object reference. However, you cannot store an
integer in a slot, and then retrieve the same bits re-interpreted as an object reference.
Moreover, at any given program point, each slot has a unique type can be determined
using static data flow. (The type may be “unassigned”, in which case you are not allowed
to read the slot’s value.) These restrictions are part of Java security model, and are
enforced by the Java bytecode verifier. We do a similar analysis in jc1 , which lets us
know for every program point, the current stack pointer, and the type of every local
variable and stack slot.

 Internally gcc uses two main representations: The tree representation is at the
level of an abstract syntax tree, and is used to represent high-level (fully-typed)
expressions, declarations, and types. The rtl (Register Transform Language) form is
used to represent instructions, instruction patterns, and machine-level calculations in
general. Constant folding is done using trees , but otherwise most optimizations are
done at the rtl level.

 The basic strategy for translating Java stack-oriented bytecodes is that we create a
dummy local variable for each Java local variable or stack slot. These are mapped to gcc
“virtual registers,” and standard gcc register allocation later assigns each virtual register
to a hard register or a stack location. This makes it easy to map each opcode into tree -
nodes or rtl to manipulate the virtual registers.

 As an example, consider how to compile iadd , which adds the top two ints on the
stack. For illustration, assume the stack pointer is 3, and virtual registers 50, 51, and 52
are associated with stack slots 0, 1, and 2. The code generated by jc1 is the following:

 reg51 := vreg51 + vreg52

 Note that the stack exists only at compile-time. There is no stack, stack pointer, or
stack operations in the emitted code.

 This simple model has some problems, compared to conventional compilers:

• We would like to do constant folding, which is done at the tree level.
However, tree nodes are typed.

• The simple-minded approach uses lots of virtual registers, and the code
generated is very bad. Running the optimizer (with the -O flag) fixes the
generated code, but you still get a lot of useless stack slots. It would be
nice not to have to run the optimizer, and if you do, not to make
unnecessary work for it.

• The rtl representation is semi-typed, since it distinguishes the various
machine “modes” such as pointer, and different-sized integers and floats.
This causes problems because a given Java stack slot may have different
types at different points in the code.

The last problem we solve by using a separate virtual register for each machine
mode. For example, for local variable slot 5 we might use vreg40 when it contains an
integer, and vreg41 when it points an object reference. This is safe, because the Java
verifier does not allow storing an integer in an object slot and later reusing the same value
as an object reference or float.

The other two problems we solve by modeling the stack as a stack of tree nodes,
and not storing the results in their “home” virtual registers unless we have to. Thus
jc1actually does the following for iadd :

tree arg1 = pop_value (int_type_node);
tree arg2 = pop_value (int_type_node);
push_value (fold (build (PLUS_EXPR, int_type_node,
 arg1, arg2)));

The build function is the standard gcc function for creating tree -nodes, while
fold is the standard function for doing constant folding. The functions pop_value and
push_value are specific to jc1 , and keep track of which stack location corresponds to
which tree node. No code is actually generated–yet.

This works for straight-line code (i.e. within a basic block). When we come to a

branch or a branch target, we have to flush the stack of tree nodes, and make sure the
value of each stack slot gets saved in its “home” virtual register. The stack is usually
empty at branches and branch targets, so this does not happen very often. Otherwise, we
only emit actual rtl instructions to evaluate the expressions when we get to a side-
effecting operation (such as a store or a method call).

Since we only allocate a virtual register when we need one, we are now using
fewer virtual registers, which leads to better code. We also get the benefits of gcc
constant folding, plus the existing machinery for selecting the right instructions for
addition and other expressions.

The result is that we end up generating code using the same mechanisms that the
gcc C and C++ front-ends do, and therefore we can expect similar code quality.

3.2 Class meta-data

Compiling the executable content is only part of the problem. The Java run-time
also needs an extensive data structure that describes each class with its fields and
methods. This is the “meta-data” or “reflective” data for the class. The compiler has to
somehow make it possible for the run-time system to correctly initialize the data
structures before the compiled classes can be used.

If we are compiling from bytecodes, the compiler can just pass through the meta-
data as they are encoded in the class file. (If the run-time supports dynamically loading
new classes, it already knows how to read meta-data from a class file.)

It is inconvenient if the meta-data and the compiled code are in different files. The
run-time should be able to create its representation of the meta-data without having to go
beyond its address space. For example reading in the meta-data from an external file may
cause consistency problems, and it may not even be possible for embedded systems.

A possible solution is to emit something like:

static const char FooClassData[] = "\xCa\xfe\xba\xbe...";
static {
 LoadClassFromByteArray(FooClassData);
 Patch up method to point to code;

The code marked static is compiled into a dummy function that is executed at
program startup. This can be handled using whatever mechanism is used to execute C++
static initializers. This dummy function reads the meta-data in external format from
FooClassData , creates the internal representation, and enters the class into the class
table. It then patches up the method descriptors so that they point to the compiled code.

This works, but it is rather wasteful in terms of memory and startup time. We

need space for both the external representation (in FooClassData) and the internal
representation, and we have to spend time creating the latter from the former. It is much
better if we can have the compiler directly create the internal representation. If we use
initialized static data, we can have the compiler statically allocate and initialize the
internal data structures. This means the actual initialization needed at run is very little Ð
most of it is just entering the meta-data into a global symbol table.

Consider the following example class:

public class Foo extends Bar {
 public int a;
 public int f(int j) { return a+j; }
};

That class compiles into something like the following:

int Foo_f (Foo* this, int j)
{ return this->a + j; }

struct Method Foo_methods[1] = {{
 /* name: */ "f";
 /* code: */ (Code) &Foo_f;
 /* access: */ PUBLIC,
 /* etc */ ...
}};

struct Class Foo_class = {
 /* name: */ "Foo",
 /* num_methods: */ 1,
 /* methods: */ Foo_methods,
 /* super: */ &Bar_class,
 /* num_fields: */ 1,
 /* etc */ ...
};

static {
 RegisterClass (&Foo_class, "Foo");
}

Thus startup is fast, and does not require any dynamic allocation.

3.3 Static references

A class may make references to static fields and methods of another class. If
we can assume that the other class will also be jc1 -compiled, then jc1 can emit a direct
reference to the external static field or method (just like a C++ compiler would). That
is, a call to a static method can be compiled as a direct function call. If you want to
make a static call from a pre-compiled class to a known class that you do not know is pre-
compiled, you can try using extra indirection and a “trampoline” stub that jumps to the
correct method. (Not that this feature is very useful: it makes little sense to pre-compile a
class without also pre-compiling the other classes that it statically depends on.)

A related problem has to do with string constants. The language specification
requires that string literals that are equal will compile into the same String object at run-
time. This complicates separate compilation, and it makes it difficult to statically allocate
the strings (as in done for C), unless you have a truly unusual linker. So, we compile
references to string literals as indirect references to a pointer that gets initialized at class
initialization time.

3.4 Linking

The jc1 program creates standard assembler files that are processed by the
standard unmodified GNU assembler. The resulting object files can be placed in a
dynamic or static library, or linked (together with the run-time system) into an executable,
using a standard linker. The only linker extension we really need is support for static
initializers, but we already have that (since gcc supports C++).

While we do not need any linker modification, there are some that may be
desirable. Here are some ideas.

Java needs a lot of names at run-time –for classes, files, local variables, methods,
type signatures, and source files. These are represented in the constant pool of .class
files as CONSTANT_Utf8 values. Compilation removes the need for many of these names
(because it resolves many symbolic field and method references). However, names are
still needed for the meta-data. Two different class files may generate two references the
same name. It may be desirable to combine them to save space (and to speed up equality
tests). That requires linker support. The compiler could place these names in a special
section of the object file, and the linker could then combine identical names.

The run-time maintains a global table of all loaded classes, so it can find a class
given its name. When most of the classes are statically compiled and allocated, it is
reasonable to pre-compute (the static part of) the global class table. One idea is that the
linker could build a perfect hash table of the classes in a library or program.

4 RUN-TIME

Running a compiled Java program will need a suitable Java run-time
environment. This is in principle no different from C++ (which requires an extensive

library, as well as support for memory allocation, exceptions, and so on). However, Java
requires more run-time support than “traditional” languages: It needs support for threads,
garbage collection, type reflection (meta-data), and all the primitive Java methods. Full
Java support also means being able to dynamically load new bytecoded classes, though
this may not be needed in some embedded environments. Basically, the appropriate Java
run-time environment is a Java Virtual Machine.

It is possible to have jc1 produce code compatible with the Java Native Interface
ABI. Such code could run under any Java VM that implements the JNI. However, the JNI
has relatively high overhead, so if you are not concerned about binary portability it is
better to use a more low-level ABI, similar to the VM’s internal calling convention. (If
you are concerned about portability, use .class files.) While we plan to support the
portable JNI, we will also support such a lower-level ABI. Certainly the standard Java
functionality (such as that in java.lang will be compiled to the lower-level ABI.

A low-level ABI is inherently dependent on a specific VM. We are using Kaffe—
a free Java VM, written by Tim Wilkinson (see Bibliography for [Kaffe] on page 15),
with help from volunteers around the “Net.” Kaffe uses either a JIT compiler on many
common platforms, or a conventional bytecode interpreter, which is quite portable
(except for thread support). Using a JIT compiler makes it easy to call between pre-
compiled and dynamically loaded methods (since both use the same calling convention).

We are making many enhancements to make Kaffe a more suitable target for pre-
compiled code. One required change is to add a hook so that pre-compiled and pre-
allocated classes can be added to the global table of loaded classes. This means
implementing the RegisterClass function.

Other changes are not strictly needed, but are highly desirable. The original Kaffe
meta-data had some redundant data. Sometimes redundancy can increase run-time
efficiency (e.g., caching, or a method dispatch table for virtual method calls). However,
the gain has to be balanced against the extra complication and space. Space is especially
critical for embedded applications, which is an important target for us. Therefore, we
have put some effort into streamlining the Kaffe data structures, such as replacing linked
lists by arrays.

4.1 Debugging

Our debugging strategy for Java is to enhance gdb (the GNU debugger) so it can
understand Java-compiled code. This follows from our philosophy of treating Java like
other programming languages. This also makes it easier to debug multi-language
applications (C and Java).

Adding support for Java requires adding a Java expression parser, and routines to
print values and types in Java syntax. It should be easy to modify the existing C and C++
language support routines, since Java expressions and primitive types are very similar to
those of C++.

Adding support for Java objects is somewhat more work. Getting, setting, and
printing of Object fields is basically the same as for C++. Printing an Object reference
can be done using a format similar to that used by the default toString method –the
class followed by the address such as java.io.DataInput@cf3408 . Sometimes you
instead want to print the contents of the object, rather than its address (or identity).
Strings should, by default, be printed using their contents, rather than their address. For
other objects, gdb can invoke the toString method to get a printable representation,
and print that. However, there should be different options to get different styles of output.

gdb can evaluate a general user-supplied expression, including a function call.
For Java, this means we must add support for invoking a method in the program we are
debugging. Thus, gdb has to be able to know the structure of the Java meta-data so it can
find the right method. Alternatively, gdb could invoke functions in the VM to do the job
on its behalf.

gdb has an internal representation of the types of the variables and functions in
the program being debugged. Those are read from the symbol-table section of the
executable file. To some extent this information duplicates the meta-data that we already
need in the program’s address space. We can save some file space if we avoid putting
duplicate meta-data in the symbol table section, and instead extend gdb so it can get the
information it needs from the running process. This also makes gdb start-up faster, since
it makes it easier to only create type information when needed.

Potentially duplicated meta-data includes the source line numbers. This is because
a Java program needs to be able to do a stack trace, even without an external debugger.
Ideally, the stack trace should include source line numbers. Therefore, it is best to put the
line numbers in a special read-only section of the executable. This would be pointed to by
the method meta-data, where both gdb and the internal Java stack dumper can get at it.
(For embedded systems one would probably leave out line numbers in the run-time, and
only keep it in the debug section of the executable file.)

Extracting symbolic information from the process rather than from the executable
file is also more flexible, since it makes it easier to also support new classes that are
loaded in at run-time. While the first releases will concentrate on debugging pre-compiled
Java code, we will want to debug bytecodes that have been dynamically loaded into the
VM. This problem is eased if the VM uses JIT (as Kaffe does), since in that case the
representation of dynamically-(JIT-)compiled Java code is the same as pre-compiled
code. However, we still need to provide hooks so that gdb knows when a new class is
loaded into the VM.

Long-term, it might be useful to download Java code into gdb itself (so we can
extend gdb using Java), but that requires integrating a Java evaluator into gdb .

4.2 Profiling

One problem with Java is the lack of profiling tools. This makes it difficult to

track down the “hot-spots” in an application. Using GCC to compile Java to native code
lets us use existing profiling tools, such as gprof , and the gcov coverage analyzer.

5 STATUS

As of early July 1997, jc1 was able to compile a simple test program, which
calculates the Fibonacci numbers (up to 36), both iteratively and recursively (which is
slow!), and prints the results. No manual tinkering was needed with the assembly code
generated, which was assembled and linked in with kaffe (a modified pre-0.9.1
snapshot) as the run-time engine. On a SparcStation 5 running Solaris2, it took 16
seconds to execute. In comparison, the same program dynamically compiled by Kaffe’s
JIT takes 26 seconds, and Sun’s JDK 1.1 takes 88 seconds to run the same program.

These numbers are encouraging, but they need some context. Start-up times (for
class loading and just-in-time compilation) should in all cases be fairly minor, since the
execution time is dominated by recursive calls. In the jc1 -compiled case, only the
actually test class (calculating Fibonacci plus the main methods that prints the result) is
compiled by jc1; all the other classes loaded (including the classes for I/O) are compiled
by kaffe ’s JIT-compiler. This means there would be some slight extra speed up if all the
classes were jc1 -compiled. Do note that the test-program uses simple C-like features that
are easy to compile: integer arithmetic, simple control structures, and direct recursion.
The results cannot be directly generalized to larger programs that use object-oriented
features more heavily.

The basic structure of the compiler works, but there is still quite a bit of work to
do. Many of the byte-codes are not supported yet, and neither is exception handling. Only
some very simple Java-specific optimizations are implemented. (Of course, jc1 benefits
from the existing language-independent optimizations in gcc .)

The Kaffe VM works on most Java code. We have enhanced it in various ways,
and modified the data structures to be simpler and more suitable for being emitted by the
compiler.

The Java support in the gdb debugger is partially written, but there is still quite a
bit to go before it is user-friendly. We have not started work on our own library
implementation or source-code compiler.

ACKNOWLEDGEMENTS

This paper is partly based on a document called “A GCC-based Java
Implementation” ( 1997, IEEE), which was presented at IEEE Compcon, Spring 1997.

BIBLIOGRAPHY

[GCC] Using GNU CC
Richard Stallman
Free Software Foundation, 1996.

[JavaSpec] The Java Language Specification
James Gosling, Bill Joy, Guy Steele
Addison-Wesley, 1996.

[JavaVMSpec] The Java Virtual Machine Specification
Tim Lindholm, Frank Yellin
Addison-Wesley, 1996.

[Kaffe] Kaffe—a virtual machine to run Java code
Tim Wilkinson
http://www.kaffe.org/

[Kawa] Kawa, the Java-based Scheme System
Per Bothner
http://www.cygnus.com/~bothner/kawa.html

