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yescrypt: large-scale password hashing
Why passwordsy Why hashing?
¥ Fasswords remaln a convenlent and ublgqultous authentication factor
+ "Something you know" 1n 2FA
# Proper password hashing mitigates the impact of user database leaks

+ Saves a percentade of accounts from comperomlise untill passwords are
forcibly changed (as they should bhe atter a known database lealk)

+ Mitigates the 1mpact on the users’ accounts on other sites, where
the same or simillar passwords may have bheen reused

¥ Password hashing is not a perfect security measure, yet it is a must
+ To make 1t effective, password policy enforcement 1s also needed
¥ A closely related concept 1= password-based key deriuvation

¥ These days, "password' should actually mean "passphrase”
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yescrypt: large-scale password hashing
Flailntext password storage (196ds to early 1978s CT55, TENEX, Unix)
Setting a new password

password

i}
L

password store

Llon

L
C1

had a password file leak incident through text editor temporary f1le
= Authenticating with a password
Fassuord rassword store
.u
compare

is it timing—-safe?

. TEMEA had a character-by-character timing leak
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yescrypt: large-scale password hashing

Fassword hashing (early 1978s Multics & Unix)
¥ Setting a new password

password

%
"

nash F;nctinﬂ

L}
password hash store

¥ Authenticatinga with a password

passuword prassword hash store
l."-, p i’
!._‘I s
hash function !
L
I
compare
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yescrypt: large-scale password hashing

Password hashing (late 197Y8s Unix)
¥ Setting a new password

password new salt
rolicy check?\ /
slow hash tunction

L} L)
password hash store

¥ Authenticatinga with a password

password password hash store
\ A(salt) /(hash)
!'.'I .-'-I‘l
slow hash tunction s
‘.‘.'. .'-++'
I
compare
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yescrypt: large-scale password hashing
Fassword hashina (1998=s BSDI, borypt, PBEDFZ)
¥ Setting a new password

password new salt & cost
v /4 Laka setting)
tunably slow hash F;nctinﬂ

L} L)
password hash store

¥ Authenticatinga with a password

Lassword password hash store
v S{setting) /(hash?’
| /!

tunably slow hash function 2
‘."-. s d

compare
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yescrypt: large-scale password hashing
Fassword hashina 2018z scrypt, ArAong, ...)
¥ Setting a new password

password new salt, costs
v /4 taka setting)
memory-hard hash function

L} L)
password hash store

¥ Authenticatinga with a password

Lassword password hash store
v S{setting) /(hash?’
| /!

memory-hard hash ftunction ry
L=

compare
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yescrypt:

large-scale password hashing

Fassword cracking (unsalted, unoptimized)

¥ For each candidate password
+ For each hash
candidate password

L1l
L

rassword hash
e

r

o

hash function £

Ry
L
comeare
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yescrypt: large-scale password hashing
Fassword cracking tunsalted, semi-optimized)

¥ For each candidate password

candidate password rassword hashies)

LY ra
' ¢

(] Iy
hash tunction £
N
i

one-to-mand compare

¥ We‘ve amortized the cost of hashing, reusing the result of sach computation

8 / 89



yescrypt: large-scale password hashing
Fassword crackina (salted, semli-optimized)

¥ For each candidate password
+ For esach salt

candidate password rassword hashies) that use the current salt
N S(salt) / Chashes)

r
F

I___I
hash tunction F
3
i
one-to-many compare
becomes one-to-one when each salt 1s unique, as they should he

¥ We can no longer amortize the cost of hashing when each salt 15 unigue
+ Caveat: the salt should be unigque globally, not Just within a database

(otherwise a multi-target or non-targeted/sopportunistic attack on many
leaked password hash databases would amortize the cost across databases)
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yescrypt: large-scale password hashing
Fassword crackina (salted, fully optimized!’

¥ For each group of candidate passwords tgroups of more likely passwords first)
+ For each salt (salts shared by more hashes +irst)
candidate passwordis) rassword hashies) that use the current salt
N\ Alsalt) S Chashes maybe partially reversed)

l.“'

LI
L

many-to-many hash tunction F
COsSt-amortizing, optimizeds
parallelized ¥
many—-to-many compars
hecomes mahy-to-one when each salt 15 unique, as they should be

¥ Cost-amortizing: 1+ a computation doesn‘t have to be performed per each
‘password, hashy combination, 1t is performed less often & result reused

t "Rey setup’ andsor Usalt setup’ may be moved to an outer loop

+ "Finalization” may be reversed at startup & then not pertormed at all
+ Such as DES Final permutation, encoding 1nto an ASCII string, etc.
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yescrypt: large-scale password hashing
Fassword cracking cost reduction
. When we amortize cost, we reduce total cost To achieve the same resulis
+ We do 1t e.g. through reducing the total amount of computation
e For well-suited hashing schemes, very little computation can be amortized
+ However, that’'s not the only way to reduce cost
. Besides computational complexity, the other major metric 15 space complexity
. Real-world costs may be 1ncurred for hardware, malntenance, enerdy, 2TC.

+ Thes

= ts are related to both computational and space complexities,
as wel

COS
1 as to real-world constraints, which may vary by attacker

+ For examele, "how many CPUs and how much EBAM 1= occupiled for how long,
and do we readlly have those or do we have To acoqulire them?"
+ ... and then 1t might not be CPUs anumore
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yescrypt: large-scale password hashing

Fassword crackilng cost reduction throuagh parallel processing

¥ Parallel processing during authentication is limited by the product of:
+ number of concurrent authentication attempts
+ natural parallelism of the password hashing scheme

¥ Parallel processing potential during password cracking 1s "unlimited"

¥ Thus, attack duration can be "arbitrarily" reduced through addition ot
parallel processing elements (CPRUs/SIMD, moreslaraer GPUsAFPGRsARSICE)

+ along with accordinaly more memory
unless the hashing scheme allows for memory cost amortization

+ Most older schemes don’t use much memory andway, so0 only the cracker s
memory "ouverhead'" (e.q., hashes) needs to be amortized - and 1t can he
+ Most modern schemes should avoid this, which they do to varying extent

¥ Farallel processing doesn’t reduce the amount of comeutation, but

+ 1t reduces the amount of time ftor which other resources are held andsor
+ 1t amortlizes their cost (e.q., a CPU alone wvws, the CPU+GPUs per chassis)
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yescrypt: large-scale password hashing
Fassword cracking cost reduction through time-memory Trade-oft (THTO)

¥ It may be possible to compute a function 1n less time by US1ng mMore memory
+ 2.9,., making greater use of table lookups i1in the computation, or 1n the
extreme case replacing the entire computation with a [hugel table lookup

+ Historically, many traditional Unix DES-based crypt(3) crackers used
larger 1ntermedlate lookup tables than defensive imelementations did

¥ Conversely, 11 may also be possible to compute a function 1n less memory
+ 2,9,, by throwlng away and recomputing lntermedlate results when needed,
which 1ncreases the amount of computation (hut not necessarily of time)

+ scrypt 1s deliberately friendly to this trade-off (1t lower-bounds the
time-memory producty, and GPUSFPGRARSIC crackers and miners use 1t

¥ The defender ‘s balance for computation (and time) vs. memory usage by a
rassword hash function might not match what a given attacker finds optimal

move the balance over the TMTO curve 1n ei1ther
' ttacker ‘s costs of the ditferent resources
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yescrypt: large-scale password hashing
Fassword cracking cost metrics
¥ For a giuven performance ({password, hashr tests per time, maube amortized)
+ Hardware: ASIC die area, mm*Z

+ for a certaln design at a certain clock rate in a certain ASIC process
+ Power, W

+ ot a2 Ccost per se, but for lendthy attacks translates

INnto enerdy cost
+ correlates with die area

¥ For a alven attack ("test these candidate passwords against these hashes')

+ Hardware: ASIC die area and time product (area-time, AT), mm*Z ¥ s
+ Energy: power and time product, J = W ¥ s

+ correlates with AT, letting estimate relative costs 1n AT terms alone
¥ Hardware and energy may have monetary costs, but not alwaus to the attacker

¥ Feal-world attackers’ costs may vary dreatly .9, due to existing hardware,
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yescrypt: large-scale password hashing

Farallelized hash function forlginally memoryless)

candidate passwords
RS =S == ======—"=S= == ==
eSS EEEIE SIS SIS SIS E = S SIS e = S SIE e S ST S St
fm——————— fm——————— fm——————— tm——————— tm——————— tm——————— pm——————— fm——————— +
core core core core core core core core
pm——————— fm——————— fm——————— fm——————— tm——————— fm——————— fm——————— fm——————— +
core core core core core core core core
¥ S - fm——m e fm— fmm fmmm————— e pmm—————— e ——— +
core core core core core core care core
fm——————— fm——————— fm——————— tm—————— tm—————— tm——————— fm——————— pm——————— +
core core core core core core core core
fm——————— fm——————— fmm————— tm—————— tm——————— fm——————— fm——————— fm——————— +
| EE T X EES | EE - = =

|
L T Y Y " VR P Y

|
¥ VU WYYy Yy Yy gy
hashes for comparison agalnst those b

ing cracked (for current salt)

3
M| b

In this 1llustration, we're computing 232 hashes 1n parallel 1n the same amount
of Time that a detender using only 1 core (and maybe having only 1 password To
authenticate at the moment!) woudld need for 1 hash
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yescrypt: large-scale password hashing

Farallelized hash function tamortizable memory-hard)

candidate passwords
SERES == =—=—====F W
R TR ST S SIS SIS TR TR
fm——————— fm——————— fm——————— tm——————— tm—————— tm—————— fm—————— fm——————— +
core core core core
fm——————— fmm—————— fmm—————— tm—————— + +
core core core core
fmm—— fmm—————— fmm—————— T - + memory +
core core core core
fm——————— fmm—————— fmm————— tmm————— + +
core core core core
fmm—————— fmm—————— fmm—————— e ————— R fm—————— pm—————— fm——————— -
== =X E X EEEESESES
RV Ry Y UV VRN VR VAR VRN VIV R RN VRN Y
hashes for comparison against those bein

ing cracked (for current salt)
In this 1llustration, we're computing 16 hashes 1n parallel 1n the same amount

of time that a detender using only 1 core (and maybe having only 1 password To
authenticate at the moment!) woudld need for 1 hash
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yescrypt: large-scale password hashing

Farallelized hash tunction (parallelizable memory-hard)

candidate password

5
pmm———— fom———— fom———— pomm——— e o ——— o o ——— o +
core core core core
e ———— fomm————— fmmm——— fmmm————— ‘ +
core core core core
e fmm e fmmm + Memory +
core core core core
fmm—— fmm———— pom———— pmmm——— B +
core core core core
fmm————— fmm————— fmm———— pm————— e pom———— o ————— o ——— o m————— +
5

hash for comparison agalinst those being cracked (for current salt)

In this 1llustration, we're computing 1 hash 1n 1516 of the amount of time
that a defender using only 1 core and the same amount of memory would spend
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yescrypt: large-scale password hashing

Farallelized hash function (sequential memory-hard)’

candidate passwords

TEK
pm——————— pm———————— e —————— fm——————— fm——————— tm——————— fm——————— fm——————— +
core | core |
pm——————-— + fm——————— + +
+ memory + memory +
+ + +
o —————— fm——————— fm——————— fm——————— fm——————— fm——————— fm——————— fm——————— +
|
o

hashes for comparison against those being cracked (for current salt)

In this 1llustration, we're computling 2 hashes 1n parallel 1n the same amount
of time that a detender using only 1 core (and maybe having only 1 password tTo
authenticate at the moment!) would need for 1 hash, but we need Zx more memory
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yescrypt: large-scale password hashing

segmentation fault (core dumped)

In these i1llustrations and further, | core | refers to any processing element

capable of computing the target hash or an appropriate portion thereof without
having a lot of memory of 1ts own. We glive memory to cores, sometimes sharing
1t across several of them.

A core may be today's usual CPU core, or 1t may be a S5IMD (single 1nstruction,
multiple data) unit te.g9. within a GFU CU or SM), or 1t may be a SIMD lane
(within a CPU core aor a GPU SIMD unit), or 1t may he a plpeline stage (.9,
with different hash computations’ instructions interleaved on a superscalar
CPU or a GPUY, or 1t may even be a single bit number across MN-bit registers in
a reglister file (when we've rotated our problem and are now "bitslicing” 1t)

Of course, and most i1mportantly, a core may also be a logic circult 1n an FPGA
or ASIC, but even there by a core we might also be referring e.g. to each
clpeline stage, whichever option 1= relevant or optimal 1n a2 91ven context
Fossibllities abound
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yescrypt:

large-scale password hashing

SDI‘"':-IF"t- memnory usadge

scrypt spends half i1ts time filling a memory reglon with password- and salt-
derived blocks and the other half "randomly" i1ndexing and reading those blocks
sequential write| random read
I
188 128
T e
memor Yy
usage
Qb e e e o e e e
5 time 2N
¥ Feak memory-time product of detensive Use contributes to attack AT cost?
+ Mo, 174 can be amortized across optimally desynchronlzed i1nstances

¥ 274 of memory-time product contrilibutes to attack

AT cost?

Mot quite,
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1 core computes blocks yet only stores those with index near a

then M cores

¥ Asuymptotically,

yescrypt: large-scale password hashing
scrypt sqrt(N) cores attack

multiple

of MAM,

(rejcompute the missing blocks from those checkpoints in NAM fTime

memory
H=age

M

Al cost of the memory f1lling phase

2

1 core |2 cores| random read

g8/ 18
69%

12 negligible

+ In the real world, =sach core would also need a white port Lo memory

¥ 172 of memory-time product contrilibutes to attack

AT cost? Not quite,
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yescrypt: large-scale password hashing
scrypt TMTO attack

e can avoid storing some of the blocks throughout the entire computation, and
recompute the missing blocks from the preceding checkpoints 1f and when needed

1 core |2 cores|random read & recompute
M
. B2/128

48%
memory
ysage
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yescrypt: large-scale password hashing
scrypt TMTO attack

We can avold storing some of the blocks throughout the entire computation, and
recompute the missing blocks from the preceding checkpoints 1f and when needec

1 core |2 cores|random read & recompute
Hl'.-I.E B || L] B | | | | ] = B B = B B
mEFnDrI:.I B | | | |} B | | | | ] | | L & | | | | | | | | | B | | E'Ef’I.iEE
sage =

5 T ime 2N 2. 2N

¥ Asymptotically, only 174 of the memory—-time product of a stralghtforward
(usuwally optimal) defensive implementation contributes to attack AT cost

¥ [t's 1/4 even without the sgrt(MN) cores attack as the total running time
becomes so high that the memory filling time 1s negligible 1n comparison

¥ Mot an oversiaght: attack cost estimates 1R scrypt paper 1nclude this 174
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yescrypt: large-scale password hashing
yescruypt memory usade

yescrypt combines sequentlial writes and random reads (of the blocks already
written) until 1ts memory 1s full and then proceeds with random read-writes

seq w & rnd r | random rAw
M
188./4128
7aY
memory
Usage

24 s 89



yescrypt: large-scale password hashing
yescrypt sliding window

During the memory +i1lling phase, random reads occur from a sliding window,
Like N, the size of the sliding window 1s a power of two (2, 4, ..., N/2).

sed w &% rnd r | random rAw
¥ —_—  — —=— =
29/36 : === = = = — 188/128
21% - === === = TaY
memory
LUsage .
|
| .
[ | [ | | [ | B [ ] B B | | [ ] [ ] [ | [ ] [ | L ]
Ht——————mmrrerr e -
B time 2N

Compared to alternatives such as modulo division To obtaln an lhndex ouver the
tull range, the sliding window provides greater assurance redarding a2 smaller
AT cost (1/73%N~2 ws., the potential of 1/2%¥N~2) and doesn't redquire an extra

potentially timing—unsate operation (bitwise AMD and ADD vs, modulo division)
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yescrypt:

large-scale password hashing

yescrypt sliding window

During the memory +i1lling phase, random reads occur from a sliding window,
Like N, the size of the sliding window 1s a power of two (2, 4, ..., N/2).

seq w &
M
29/36
81
memory
ysage .
|
=
= —
t=m————————
5

rnd r | random rAw

18/ 128
(4=

Hith the divisor starting small and increasing towards N, modulo division
would be heavily blased towards smaller block numbers., This bias could hbe

compensated +or with more math,

but sliding window does the trick on 1ts own

and 1t 1ndexes more distinct blocks (Y27¥ wvs, oB¥ by end of memory fFllling).
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yescrypt: large-scale password hashing

yescrypt random read-wrltes

Oonce the memory 1s full, yescrypt proceeds with random read-writes - that 15,
1t not only uses each random block for computation but also updates the block

sed w & rnd r | random rAw
M :
29/36 : 188/128
81 (4=
memory
Usage .
|
« 3+ 3 .
. [ | . [ ] ]
Ht——————errerrr e -
B time 2N

This i1ncreases the number and variety of prior blocks that the updated blocks

increases the amount of recompeutatlion and each block s
in a TMTQ attack

depend on, which 1n turn

recomedtation tree depth (and thus time to reach leatd nodes)
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yescrypt: large-scale password hashing
yescrypt swap insout attack

It may be practical to swap out and then kback 1n the blocks that fall outside
of the sliding window, leaving us with:

seq w & rnd | random rAw
) 29,36 . | 93,128
a1 : 7o
memory .
ysage .
|
« 3 3
a4
Ht——————mrrrrr e -
5 time 2N

¥ Asuymptotically, 272 of the peak memory-time product d9oes To attack AT cost

¥ That = much better than scrypt’'s 154, Can we do better yet? In a sense.
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yescrypt: large-scale password hashing

yescrypt optimal running time

We should actually want to maximize attack cost achievable 1n a given defensive
running time budget. Turns out 1t°s no longer optimal to go to 2N,

seq w & rnd |
M
29/36
81
memory
ysage

Due tTo our 1mprovements to the memory
contribute to asympetotic AT cost, but
end our defensive yescrypt runs after

random r/w

>d/80
=15

+1lling phase (which 1n scrypt didn't
1N yescrypt 1t does), 1t°s now optimal To
indexing random blocks only HA3 times 1n

the read-writes phase. This enables the defender to use more memord.
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yescrypt: large-scale password hashing

yescrypt higher memory usadge 10 same time

If we "reduce" our running time from 2N to 4N/3, we can 1ncrease N¥r by S8

seq write & random read|rnd rsw

ME :
block~ .
S1zZe =1 . 1B8/,192
= SEY
memory
LUsage 1887128
a4
At=———mmm e +=3
5 T 1me 4M 3
=1

12 of new or 374 of old N¥r"s memory-time d40es to AT co

28 s 89
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yescrypt: large-scale password hashing

yescrypt higher memord usadge 10 same time?

yescrypt's 4M/3 block operations at -BY higher N¥r pru ess the same number of
bgtea as scrypt’'s 2N block operations do. Is 1t the same amount of real time?
£ g;acrgpt uses twice more bandwidth: esach sequential write 1s accompanied

with a random read, and each random read 15 accompanied with a rewrilte
(cache-+riendlier than a random wrlte unrelated to a2 prior read would be)

e can 1t this 1n the same defensive runnling time, that’'s great - a
way to further 1ncrease cost ot attacks with other/specilalized hardware

+ Can we? Depends on concurrency, bandwildth saturation, fullAhalf duplex.

¥ There are also differences in how we process the contents of each bloc
(naturally, we don’t only write and read - we also compute)

¥ In some benchmarks, yescrypt at 4NS2 15 as tast as scrypt at 2N for same
M, meaning we can’t use more memory and so we "merely” double the AT cost

¥ In others, we can and so we triple the AT cost vs., scrypt's +or same time

31 7 8%



i L)
il

I l‘l!l

yescrypt: large-scale password hashing

yescrypt TMTO attacks?

far, we assumed no AT cost reducing THMTO attacks on yescrupt are possible
1695 swapring insout the blocks that fall ocutside of the sliding window,
this s0? Probably yes.

¥ A further THMTO attack would involue not storing and then recomputing some
intermediate data (the pleces of data not stored would need tTo be larger than
the stored 1ntormation on where to Yind the 1nputs to recompute those pleces)

E Two metrics are 1ncreases 1n computation and time (recomputation tree depth)
- Simulation shows disproportionately high increases in amount of computation
when the amount of memory 1s decreased (“ax for 1/2, ~188BBx for 1/4 at t=H,

and the increases should only be steeper at higher t)

Until a further change, a massively parallel sub-block level TMTO attack
would make the increases of time too small at moderate decreases of memory

- The change (1n B.8.1, PHC w2, October 2B1%) addressed sub-block level att
and 1ncreased the amount of recomputation further (heyond the fi1gures ab



yescrypt: large-scale password hashing

Why sub-blocks?

+ E‘ sub-blocks of &4 b tes esach,

In (yelscrypt, each block c O
ch ck consists of 16 sub-blocks

For Eﬁdmple, at r=8 ea

Here‘'s why:

¥ ke need to make the blocks larger to amortize the
memory latency 1n defensive 1melementations

cost of TLEB misses and

¥ bMe need sub-blocks to make the blocks larger than the underlyilng primitive’s
1nput and output sizes (which are 64 bytes for scrypt’'s SalsalBsg)

¥ In yescrypt, we also use this opportunlty to amortize the cost of mixing of
the SIMD lanes (more on this later), which 1s only done once per full block
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yescrypt: large-scale password hashing

sub-bhlocks

mamgEEs

In i{yelscrypt, eac
For example, at r=8

HEEE1111222233334444555506066677 V78888999 9AARRBEBECCCCDDDDEEEEFFFF
HERB11112222333344445555666677 7 788889999RAARBEBEEBCCCCDDDDEEEEFFFF
HERB11112222333344445552600077 7788889999 AARRBEBEECCCCDDDDEEEEFFFF
HEEB11112222333344445552666077 77888899 99RAAREBEECCCCDDDDEEEEFFFF

1 block consists
= 1o

+ 2r sub-blocks of 64 bytes esach.
ach 1 Ki1B b CONS1S

ts of 16 sub-blocks.

0
Ck

HEBBE111122205559534444220000007 7 7 78888999 9AARARRBEEBCCCCDDDDEEEEFFFF
HEBE1111d22233004444500500007 77 70088999 9ARAAREEEECCCCDDDDEEEEFFFF
=11

BE
bobb
BEBB11112222550054444222200007 7 7 o888 9999ARAREEEBCCCCDDDDEEEEFFFF

0 = O O e 00 O e D
=)
I
I
5
s
s
s
'
]
™0
"
™.
(A
(N
Ll
Ll
o
I
I
e
-
o
Al
-
T
T
T
T
-]
-]
-]
-]
N
nn
e
an
L
I
J
L
I
I»
I
I
e
I
I
L'.E
)
il
i
W
o
=
e
i
Tl
™
T
Il
T
T
my
g

-
i
I

In this 1llustration, each character represents 16 bytes of data, and we set
the characters to hexadecimal zero-based numbers of the sub-blocks

suppose each sub-block 1n a3 newly compeuted block (to bhe (re)written) depended
on the same-numbered sub-blockis) 1n 1ts 1nput blockis)., Then the hexadecimal
digits above would also represent the data dependencies for (relcomputation.
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yescrypt: large-scale password hashing

Sub-block level TMTO attack setup

v

L
(i
o 1 1

SUPPDSE tha
dependencie

I~
i
1M
I

des same-numbered sub-block(s), there are also
ast sub-blocks., Don‘t store the rest 1n s

n

sarly a
ome blocks.

B ABER11112222333544445555666067 7778888999 9ARAREBEEEBCCCCDDDDEEEEFFFF

é BEEBi1i1EEE2333344445EEEEEEE????8EES??E?HHHHBEEBECE&DDDDEEEE?EEE

j BEEEi111EEE2333344445SSSEEEE????EEBEE???HHHHBEEECCCEDDDDEEEE?EEE

; BEEBi11iEEE23333444455555555????EEBBE?QEHHHHEEEECCiEDBEDEEEE?EEE
H=é

~

Suppose we‘re computing block 7, which depends on block S, which 1in turn
depends on block 3, and which in turn depends on block 1 {(as well as possibly
on some blocks that we did store 1n full)

The mostly-missing blocks also depend on their mmedlately preceding blocks,
which we did store 1n full
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yescrypt: large-scale password hashing

Sub-block level TMTO attack proaress

n =
== 1T
Ix

tart by recomputing first sub-block of block 1, which we can do right away
=

F we have the preceding block ‘s first and last sub-blocks

L

n
n
n
n

AEBEE111122223333444455556666777788889999ARAAREEEBCCCCDDDDEEEEFFFF
p— FFFF
AERA111122223333444455556666777788889999ARAREEEBCCCCIDDDEEEEFFFF

FFFF

FFFF
AEEE111122223333444455556666777788889999ARAABEEECCCCIDDDEEEEFFFF

e (N ey R T L S Y
|

- = -+ =% ¥ B

g @ H & & & 3B

'-_l_
et «
=
IT
(N

~

Suppose we‘re computing block 7, which depends on block 5, which 1in turn
depends on block 3, and which in turn depends on block 1 {(as well as possibly
on some blocks that we did store 1n full)

The mostly-missing blocks also depend on their mmedlately preceding blocks,
which we did store 1n full
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yescrypt: large-scale password hashing

Sub-block level THMTO attack progress

fecin

Then on & cores we simultanecusly recompute second sub-block of b

lock Fl
first sub-block of block 3, using the recomputed first sub-bhlock of bl

b 1

a
Chk

Q

B BEBE11112222332544445525000007 7Y 72288999 9ARRAREEEBCCCCDDDDEEEEFFFF
é ééééll112222333344445555EEEE????SEBS??E?HHHHBEEBECEQDDDDEEEEEEEE
j ;éégi1112222333344445555EEEE????EEBEE?QEHHHHBEEECCCCDDDDEEEEEEEE
; BEEBi1112222333344445555EEEE????EEBBEE?EHHHHEEEEECCEDDEDEEEE?EEE
ti;e 1 ® & ¥ T ® ¥ @ ¥ W H IR T W
Suppose we’'re computing block 7V, which depends on block 2, which in turn

depends on block 3, and which in turn depends on block 1 {(as well as possibly
on some blocks that we did store 1n full)

The mostly-missing blocks also depend on their mmedlately preceding blocks,
which we did store 1n full
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yescrypt: large-scale password hashing
Sub-block level THMTO attack progress

Then on 3 cores we simultanecusly recompute third sub-b

lack ot block 1,
second sub-block of block 3, and first sub-block of block =

B ABER11112222333544445555666067 7778888992 9ARAREBEEEBCCCCDDDDEEEEFFFF
é 88881;11555%333344445555EEEE????SEBS??E?HHHHBEEBECﬁQDDDDEEEEEEEE
i éééél1112222333344445555EEEE????EEBEE???HHHHEEEECCCCDDDDEEEE?EEE
; ééé%i1112222333344445555EEEET???EEBBEE?EHHHHEEEEGCCEDDEDEEEE?EEE
{

im 1 = ¢ 4 T b ¥ 7 I BB & v W I

(L

e can start throwling away the already used recomputed sub-blocks, as shown
for first sub-block of block 1 above

38 / 89



yescrypt: large-scale password hashing
Sub-block level THMTO attack progress

Finally, we proceed on 4 cores to recompute the remaining sub-blocks of blocks
1, 3, %, and our target block 7

B ABER11112222333544445505666067 7778888992 9ARAREBEEEBCCCCDDDDEEEEFFFF
é BEEEi111ééé5555%44445ESEEEEE????EEES??Q?HHHHBEEBECEEDDDDEEEEEEEE
i BEEEE11;5555333344445SSSEEEE????EEBEEE?QHHHHEEEECCCCDDDDEEEE?EEE
; éééél111EEE23333444455555555????EEBBEE?EHHHHEEEEGCCEDBEDEEEE?EEE
tiée___i E ¢ & 9 BB T & 9§ W ©H N I = n

With this approach, we’'d recompute our missing 68 sub-blocks in 18 sub-blocks”
worth of time. ©Qur amount of computation i1s still that for 68 sub-blocks, but
our time spent (latency) is lower (and thus our ASIC or whatever i1s holding up
1T preclous memory for a shorter perlod, advancing to next candidate sooner)

As the scrypt paper casually says, "the comeutations would neatly ‘plpelipne™”
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yescrypt: large-scale password hashing
scrypt sub-block shuttling

To mitigate pipelined recomputation 1n sub-block level THMTO attacks, scrupt
shuffles the sub-blocks 1n a pre-determined manner on =ach block computation

HEEE111122223333444455550066677 V7888899 99ARARRBEBECCCCDDDDEEEEFFFF
HERB2222444466668888AARRCCCCEEEE11113333553577 V79999 BEBEDDDDFFFF
HERB2 2224444660688 88RARRCCCCEEREE11113333553577 VY9999 BEBEDDDDFFFF
HEBBZ 2224444666688 88RRARCCCCEEREE11115333355327Y VY9939 BEEEDDDDFFFF

0 = O O e 00 PO e D
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e
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e
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1
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-]
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Ll
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=
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o
T
T
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g

-
i
I

In this 1llustration, we set the characters to sub-block numbers for block B8,
and to each block ‘s preceding block ‘s sub-block numbers representing the data
dependenciles +or subsequent blocks

=t1ll be lower

This no longer plpe = 1
keoint sub-blocks

lin eatly, but recomeut
than sequential ‘s, especla = 3
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yescrypt: large-scale password hashing
scrypt sub-block shuttling

To mitigate pipelined recomputation 1n sub-block level THMTO attacks, scrupt
shuffles the sub-blocks 1n a pre-determined manner on =ach block computation

HEEE111122223333444455550066677 V78888999 9AARRBEBECCCCDDDDEEEEFFFF
AERBZ2224444060008888RRRACCCCEEEEL1113333553557 7Y Y9999 EEEBEDDDDFFFF

HEBE444455880CC0C111155529999DDD D2 dd0000RARAREEEE S S33Y VY YEBEEFFFF
HEBBEEEE111199992222AAARS 22 2EEEE4444CCCCa22DDDDecceEEEETYYYFFFF

0 = O O e 00 PO e D
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I
I
%)
e
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s
e
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I
e
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-
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T
T
T
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e
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=
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In this 1llustration, we set the characters to sub-block numbers for block B8,
and to ultimate data dependencies (goling all the way back to block 8) for
subsequent blocks., [t7g a diftterent way to look at the same shuttling scheme,

st1ll be lower

This no longer plpe = F
kpoint sub-blocks

lin eatly, but recomeut
than sequential ‘s, especla = 3
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yescrypt: large-scale password hashing
Local memory

Mot all memory 1= the same. HWhile scrypt targets a2 typical computer’s REAM with
“1 KiB loockups from a multi-megabyte reglon, boryet targets L1 cache with rapid
4 hyte lockups from a2 4 K1B region. As 1t happens, borypt 1s relatively slow
to crack on GPUs - in some cases, matching GPU attack » CPU defense speed ratioc
of scrypt at multiple megabytes. Hhy is that? Local memory exhaustion.

¥ GFUs are designed +for much higher concurrency than CFUs, but have relatively
little local memory (even 1¥ more than a CPU doeszs 1n absolute terms)

+ Az a result, there’s less local memory per hash beina computed (work 1tem),
leaving the GPU s computling unlts under-utilized

+ Design for best performance at higher concurrency means higher latencies
# Going out to off-chip global memory for 4 byte quantities 1s inefficient
+ Memory buses tend to be much wider than that
+ Memory tetches tend to be of entire cache lines, which are also much wider
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yescrypt: large-scale password hashing
yescrypet local memory usage

t While scrypt does benetilt +rom some cache or local memory for the block 1t°s
currently working on, 1t does not specifically target a cache or local memory

yescrypt does, with a Blowfish-like component 1n 1ts sub-block processing, 1n
rlace of scrypt’'s use of Salsaz2B/8

The aim 15 for yescrypt to be on par with bcocrypt at GPU attack resistance
even at unusually low memory settinas (ki1lobytes)

: This might achieue little against FPGﬁS aﬂd HSiCS but euen then GPU attacks

That said, 1t also helps against FPGAs and ASICs 1n terms of computation
latency hardenina (more on this later:
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yescrypt: large-scale password hashing
Jescrypt sub-block processing
¥ Yyescrypt uses a custom primitive called pw<form to process sub-blocks
¥ After the last sub-block of a block, pwuxform’s lanes are mixed with SalsaZBsd

pwxform stands for "parallel wide transformation", although 1t can as well he
tuned to be as narrow as one ed-bit lane., [t operates on od-bi1t lanes possibly
grouped 1nto wider "simple SIMDY lanes, which are 1n turn possibly garouped 10to
an even wider "gather SIMDY vector. This lets 1t bhe adapted to a wide varlety
of current and tuture scalar and SIMD 1nstruction sets and varying 1nstructilon
leyel parallelism, which defensive uses of yescrypt would take advantage of,

As currently recommended, yescrypt s pw<tform 15 1nstantiated for Z2-wide simple
SIMD lanes, 4-wide gather SIMD vector, 12 KiB S-boxes (3x 4 KiB), and & rounds

S-hoxes compare favorably to borypt’s (8 KiB active for random lookups at any
given time vs. borypt’'s 4 KiB), Parallelism i1s twice higher (28 independent
s=box lookups per round wvs, borypt’'s 4), Size of 1ndivicdual loockups 1= much
higher (16 bytes ws., borypt's 4 bytes), but that’'s actually an advantage 1+ 11T
doesn‘t slow them down 1n detensive 1mpelementations. Ouerall, 1t7s comparable,
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yescrypt pwxtform (one round,

Lo
&4

Hi|
64| |64
L Vo y
ADD  ADD
v |64 |64
KOR{ = +=m == +

| 128

yescrypt:

Lo
64

Hil

64| |64

L o L
ADD  ADD
v |64 |64

KOR{—+=—m - s
1128

Lo
&4

Hilj

64| |64

i '_.I I.__I I'__I Il__l
ADD  ADD
y |64 |64

$ORE— +=mm - +
1128

large-scale password hashing

all simpele SIMD lanes:

Lo
=

Hi|

64| |64

U LY L
ADD  ADD
v |64 |64

KOR{ = +==m=- +
1128
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yescrypt: large-scale password hashing

yescrypt pwxtorm (one round, one simple SIMD lane)

Hi| Lo
4| |64 |64
¥ VIRV Y
ADD ADD

¥ |64 |64
HOR{ - +-———- :

| 125

This might look comp
instruction sets 11k

J2x32=-264 integer multiplication and the S-box
lookups provide computation latency hardening,
currently ensuring attack latency of around 1 ns

winted T =,

inta2_ Tt lo = % = _mm_cuvts1l28 _si1e0d4(X) & Smaskreq;
u1ﬂt32 t h1 = x 23 32;

- _mrmul_epuld2{_mm_shuffle_epi3z2{x, Bxbil), R);

# _mm_add_epicdir, ¥(_mlZd81 ¥:24(58 + loi);

o
A= o_mm_xor_s1128(K, ¥(__miZ=1 ¥) (51 + hi)),

The output ot =sach round 1S ted 1NTOo next round.
Except on +1rst and last round, 1t 1S also writien
into 52, the third S-box. Fointers to the S-boxes
are frequently rotated.
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yescrypt: large-scale password hashing

yescrypt pw<torm (one round, one simpele SIMD lane)

o o e o e e [n fact, 1t7s Just 8 1nstructions on «<86-64
|32 |32 |32 |32 (S5EZ2 15 a genulne part of x86-64 architectures)
| ¥ ¥ g
MUL | ML | Jexag—-»e4 integer multiplication and the S-box
&4 ¥ ¥ lookups provide computation latency hardening
S1| S8
12851 125 mowd &, HPrax sarry Intel, pardon my ATET
o s + eshutod $Faxbil, X, H
andg smasks, #rax
+—+ emdludy H, ® UMLAL CVMLALT on ARM [HEOQN]
mowl ¥eax, ¥ecx
b + shirg FHx28, ¥rax
Hi| Lo paddg (S8, ¥%rcx), A
4| |64 |64 pxor (51, %raxy, A
¥ Yoy |
ADD ADD The output of each round i1s fed into next round,
¥ | o4 |04 Except on +1rst and last round, 1t 1s also writien
PR = o e e o + into 52, the third S-box. Fointers to the S-boxes
| 125 are frequently rotated.
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yescrypt: large-scale password hashing

yescrypt pwxtorm vs. sub-block level TMTO attacks

scrypt does not impelement scruypt s sub-block shuffling, but 1ts puwxform is

He
gieln mare EFFEbtlUE at mdhlhg sub-block level THTO attacks lmFF'_tlhdl

¥ With the current instantiation of pw<form (& rounds), 4 times as much data
1z written into the S-boxes as 1s written into the output block

+ Those extra writes are almost free on typlcal CPUs since L1 data caches
have separate read and weite ports anyway (the write ports would be 1dle)

¥ With the weakest possible 1nstantilation of pw<form (3 rounds), as much data
iz written into the S-boxes as is written into the output block

¥ In a THTO attack, not only some checkpoint (sub-)blocks, but also contents
of the S-boxes at some polints would need to be stored

+ Storing the S-box contents deteats the purpose of the attack, since 1t7°s
at least as much new data to store as there would be 1n the fcuh ‘olocks

¥ With 1ts S-bhox lookups and rewrites, pw«form 15 similar to yescrypt 1tseldt



yescrypt: large-scale password hashing

yescrypt comedtation latency hardenling

scrypt ‘s SalsaZBr e 1s optimally computakle 1n a lot fewer clock cuycles (anc
likely 1n less time) on ASIC than on CPU

yascrypt ‘s 32

to 64-bit integer multiplication and 4 KiB S-box lookups are
unlikely to =

much speedup

- The latency of each pwstorm round 1s lamer bound by the ma<imum of the two
latencies of 1nteger multiplication and S-bhox lookups

+ bWe're performing these aoperations 1n parallel

AN attack trying to 1mperove the time factor

1in AT by simely computing things
quicker would need to improve both of these late 1

ncies (one is not enouah)
on modern fast CPUs, either of these operations has a few cycles of latency

(commonly 3 to 5 for MUL, 4 for L1 cache load), which at 4 GHz translates to
about 1 ns

Untortunately, we also i1ncur some "overhead" (simpeler 1-cycle operations)
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yescrypt: large-scale password hashing

scrypt defensive thread-level parallelism

scrypt ‘s thread-level parallelism parameter works as a multiplier of scrupt
instances discussed so far. In software, 1t°s optionally parallel outer loop.

rassword (or passphrase), salt, parameters (including e.g9. p=2)

i
e - pm———————— fm———————— fm——————— - fm——————— fm——————— - +
| core | | cCcore | |
pm——————— + fm——————— + +
I | I
+ meEmory + memory -
I | I
+ + +
I | I
fm——————— fm——————— fm——————— fm——————— fm——————— fm——————— fm——————— fm——————— +

|

I___I

hash (or derived key)
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yescrypt: large-scale password hashing
scrypt defensive thread-level parallelism

rarallelism parameter works as a multiplier of scrypt
far. In software, 1t's optionally parallel outer loop.

p=2 (parallelized)

sequential white| random read sequential write! random read
M E 5 3 1 7 5 = I
M M
= =
M M
O 0
r I I . B e —F i i o ek
L_" ] L] ] . ' ] ] ] . L] ] ] . ] ] I:‘l ] (] (] ' . (] ] (] 1 ] (] ] . ' '
At - A4 -
I Time =M 5 T 1me =

¥ bhen the loop 1= parallelized, the memory redglons have to be separate, so the
memory usage 1s multiplled by p



yescrypt: large-scale password hashing
scrypt runnling time tunlng

scrypt s thread-level parallelism parameter works as a multiplier of scrupt
ed so far. In sottware, 1t's optionally parallel outer loop.

p=2 (not parallelized)

seduential write! random read |sequential weite! random read

N T T b s s o8 s w s

m . .
= s e o 8 r o E E s s & 1 s o8 8 o8 s s s s
m P s s s r 8 s s on s a T T T

u : : : ‘
r T T T
- T T T S L e
) o o e e
K M 2N 3N T 1me 4N

¥ bhen the loop 12 not parallelized, sach 1teration can redse the same memory
Fedlon, S0 higher p merely 1ncreases runnilng time without using more memory
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yescrypt: large-scale password hashing
scrypt runnling time tunlng

When the loop 1= not parallelized, p 15 a way To 1hcrease runnlng time without
using more memory. Elegant (not needing a separate parameter) or suboptimal?

p=2 (not parallelized)

seduential write! random read |sequential weite! random read

M : * 7 5 F % = = T T F 35 5 = 3

M . ;

= - === = = - e —

M - — - = -

O . : ) .

P E kO e T F O % i i = o

iﬂ ] s ] ] ' ] ] ] ] L] ] ] L] ' ] ] (] (] ] (] ] " [ ] (] 1 ' . . ]

- -
5 M =M =M T ime 4

¥ 174 of memory-time product can be amortized across optimally desynchronized
1hstances (hot considering other attacks). Caﬂ we do bhetter’
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yescrypt: large-scale password hashing

yescrypt runnling time tuning

SCrypts p alla ng for running time tuning (albeilt aftet
cholce not to parallelize) may bhe elegant, but 1t°s also
p=1, t=4
sed W& rhad k| random PSS

M

m

=

m

0 .

I.- | B [ | ] B [ | [ | [ ] [ ] B [ | | [ ] [ ] | B [ ] L B [ | [ ] [ ] | |

ij [ ] | | ] [ | | | [ ] [ | [ | [ ] [ | B [ | | | [ ] [ | | | [ ] [ ] L [ ] [ | | [ ] [ |

= rccccccae- et e e e -

5 M 4M/ 3 2N oM

¥ 1728 of memory-time product

instances (not consldering other attacks),

“Dmpile—time{?}

suboptimal

can be amortized across optimally desunchronized
an imerovement over scrypts 174
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yescrypt: large-scale password hashing

yescrypt runnling time tuning

yescrypt’'s 1t parameter allows for (fine- }tuniﬁg the running time separately
from memory usage and parallelism. t=1 and t=2 are gaood for fine-tuning.

p=1, t=4

sed w & rhnd k| random rAuw
M A A A e . — = = B A e S e
M . ; ;
= - e = = = e
M - - - - - - >
O . > .
P E R e m F  e E  E  aF F i - E E
iﬂ ] s ] ] ' ] ] ] ] L] ' ] . ] (] (] ] (] [ ] (] 1 ' . . ]
e % 3 5 5 3 3 :LBEh.. 26 .89%. . . . . . E'EJ;.. e 1 v w v BN
P cc s e ——— Tl L L L L L L L L L L L L o e o e e e e e 4
5 M 4H /3 2N I t ime 4M
¥ Mormalized AT cost relative To what's optimal 1n same detfensive runhing tTime
decreases, but that's OK 1+ we couldn't at+ord more memory (use case tor t)
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yescrypt: large-scale password hashing
YESCEYPT _RW ws., YESCEYPT_MWORM

¥ yescrypt deviates from scrypt heavily, but sometimes 1t may be preferable to
twealk scrypt Just a little bit

¥ YESCREYPT_RW i1z full yescrupt, and YESCRYPT_WORM iz a minimal scrupt tweak

+ HM stands for read-uwrite, WOEM stands for welte once, read many tTimes

L e e e T L e ¥
YESCRYPT_RMW YESCRYPT_WORM

P ——————— $m————— P —————— +

t | time | AT | AThorm | time | AT | ATnorm
P ——— e ————— tm————- P ————— +

5 2/3 | 4/3| 188% 1 1 188%

1 °/B 2 96X 1.25 | 1.3 96X

2 1 8/3| 89% 1.5 2 894

3 1.5 [14/3| 69% 2 3 (2

4 2 |28/3| S6% 2.2 4 64%

2 2.2 |26/3| 486% 3 > 2B%
e e et e fm————— e e et +
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yescrypt: large-scale password hashing

yescrypt detensive thread-level parallelilsm

s thread-level

rarallelism parameter works as a divider, initially

ing portions of the memory reglon to threads and then combining them

rassword (or passphrase), salt, parameters (including e.g. p=2)

i
———————— S !
core | | coFre | |
———————— + tm——————— +
I
MeEmory memory +
AW aFan I
+
|
+
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yescrypt: large-scale password hashing

yescrypt detensive thread-level parallelilsm

t's thread-level parallelism parameter works as a divider, initially

ing portions of the memory

rassword (or passphrase’,

i
fm——————— fm——————— fm——————— =
| core | | core |
fm——————— + fm——————— +
I
+ memory
| ~ S0
+
|
+

~eglon to threads

salt, parameters

and then combining them

(including e.g,. p=2)
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yescrypt: large-scale password hashing

yescrypt detensive thread-level parallelilsm

yescrypt's thread-level par lieli:m parameter works as a divider, initially
allo -El.'l:-ll"l'ﬂ !-'I_lr"tll.:h:- of the memor ' ':'lll.ii'l to threads a'u:i then L-I_Irllii.llrllrl'ﬂ them
seq wlrnd] p=2
rhd s random read
M
11
-
m
0 | = = =, - -
= ;
iﬂ " " B L L B L L B " B | | L | 2 B " ] B 2 B B 2 B B | B | ] B
B I = = = = e o o o e e e e e e e e e e
4 M2 2MA3 M 2M 3N time 4

¥ With per-thread memoriles, accesses are read surite
¥ Once the memories are combined, accesses hawve to become read-only
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yescrypt: large-scale password hashing

yescrypt detensive thread-level parallelilsm

yescrypt s thread-level par lieli:m parameter works as a diwvider, initially
allo -El.'l:-ll"l'ﬂ !-'I_lr"tll.:h:- of the memor 4 ':'lll.ii'l to threads a'u:i then L-I_Irllii.llrllrl'ﬂ them
sed wlrnd|rnd p=g
rhd rlrswlrso
M 1 lhy divider? To keep M a powsr of 2 when the
M memorles are comblned, diven arbitrary p.
= To use more memory and time, 1ncrease N¥r.
M
- | - = == ==
-
= : f o8 "
Ht———————— t=f—————— e -
5 MA2 2Ms3 N 2N I 1 ime 4M

¥ With per-thread memoriles, accesses are read surite
¥ Once the memories are combined, accesses hawve to become read-only
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1
-—-I_|'|

gedq wlrnd|rnd
rnd rlir/wlr/o

m =

-

& I'F._'H]

K Ms2

yescrypt .

large-scale password hashing

yescrypt detensive thread-level parallelilsm

2N/ 3

crupt s thread-level par
-El.'l:-ll"l'ﬂ pur'tluh:. of the memor '

M

¥ With per-thread memoriles,

¥ Once the memorles

lielizm parameter works as a divider, initially

gluh to threads at ﬂ then uumblhlﬂg them

p=g

lhy divider? To keep M a2 power of 2 when the
memorles are combined, given arbltrary p,

To use

more memory and time, 1ncrease N¥r,

bhy brie+ random read-writes? 5So that there’s
clearly no attack cost decrease when N and p

are i1ncreased by the same factor. Together,
the p threads do just as many read-writes.
t=f-———————_————————— -
2N SN time 4M
accesses are read/urlite
ined, accesses have to become read-only

afhe

Zom

-
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yescrypt: large-scale password hashing
yescrypt detensive thread-level parallelilsm

crupt s thread-level parallelism parameter works as a divider, initially
-El.'l:-ll"l'ﬂ pur'tluh:. of the memor g me ':'lll.li'l to threads and then L-I_Irllii.llrllrl'ﬂ them

sed wlrnd|rnd p=g
rhd rlrswlrso
M 1 lhy divider? To keep M a powsr of 2 when the
M memorles are comblned, diven arbitrary p.
= To use more memory and time, 1ncrease N¥r.
 E e
0 - - === bhy briet random read-writes? So that there‘'s
= == clearly no attack cost decrease when N and p
x 3 are increased by the same factor. Together,
=== the p threads do just as many read-writes.
Ht———————— t=f—————— -
5 Ms2 2Ms3 N 2N aM 1 ime 4M

Lo
only two thread sync points: when combining the memory reglons and
at the very end (scrypt has only one sync polnt at the very end)
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yescrypt detensive thread-level parallelilsm

yescrypt's thread-level parallelizsm parameter works as a divider, initially
11o atlng Furtluh: of the memnory FEHIUH to threads and then uumblhlﬂg them

a3
gedq wlrnd|rnd p=2
rnd rlir/wlr/o
M =—— The attacker has to provide the +ull amount of
M memory (or at least swap space) too, althouah
= the dependency on 1t beilng EAM 1= areatest at
M higher . This limits flexibility of attacks.
- | - = == ==
.
iﬂ 5 8 E [ 8 B
Ht———————— t=f--———————_————————— -
[ N/2 2N/3 N 2N aN t ime 4 M
| + needs tull memory (or swap 1n) even 1+ sequential
can be

sequential 1n less EAM, but all data has to be stored i(swapped out)
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yescrypt: large-scale password hashing
scrypt for mass user authentication

Mhen trying to use scrypt for mass user authentication .9. at an "Interne
compeany' , the throughput and latency constraints are commonly such that 1ts
memory usage has to be low f(e.g. 2 MiB to achiewve VZHB requests per second
on our reference 2x ES-2678 with 3x DDR3-1688 running 32 hardware threads).

This works, but 1t 1sn't 1deal. Facebook uses
L

crupt at 1 MiEBE off-loaded to
frontend nodes (whatever that means)., That” 2t

L=
great, but not sveryone will,

¥ Mhile low running time 1mplies correspondingly low attack cost, low memory
Usaae exacerbates that since attacks’ ATl cost goes as product of these two

¥ AT low memory usage like 2 MiB, scrupt might be on par with or weaker than
berypt 1n terms of GPU attacks (even 1f much stronger against ASIC attacks)

+ We‘re already dealing with that 1n yescrypt by pwxform’s S-box lookups
¥ scrypt 1z efficient to compute on smaller systems 1ncluding bothnet hodes
+ Ideally, we'd have the hashes henetfit from server hardware more
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yescrypt for mass user adthenticatlon

What 1f we pre-fi1ll memory once and reuse 11 across hash computations?  Then
our memory filling time i1sn't limited by the time allotted to compute a hash,
S0 we can use a lot more memory, but our hash function i1s no longer sequential
memory-hard - rather, 1t iz amortizable memory-hard., Since the memory can be
shared across cores, 1ts cost can be amortized and thus 1t no longer directly
contributes to Al cost of attacks.

Defensive 1mplementations may benef it from this memord sharing too, but not
helng sequential memory-hard and thereby allowlng +or greater cost amortilzation
in attacks than we use 1n detense 1s a drawback. GCan we do better? Yes.

We can keep the sequential memory—-hard hash ftunction, letting 11 use whatever
memory 1t can fill in time, and enhance 1t to also use the larger pre-filled
shared memory. It is still possible to amortize the shared memory’s cost, but
not the costs of private memories of individual hash computations.,

In yescrypt, we call the previcously discussed private memories "EAM" and the
cre-+1lled shared memory "EOMY
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yescrupt REOM

[f the cost of ROM can be amortized, does 1t help at all? Yes, and here’s how:

¥ Sharing a memory across cores 1nvolues costs: memory ports and interconnect
and bandwidth usage (which translates 1nto energy consumetion’

+ HWe Jokingly say that yescrypt with a2 FOM 1= "ROM-port-hard"

¥ For a lot of cores sharing a FOM, the cost of such sharing 1s substantial and
cotentially prohlbitive (at some polnt 117z cheaper to duplicate the ROM)

¥ For "few" cores, the ROM 15 larger than all EAMs combined (e.g., 112 G1B ROM
12 obx larger than 1888 cores’ 2 Mi1BE RAMs combined)

+ This probably makes the ROM costlier than the RAMs as well, although that
depends on the respective memory types and on how cost scales with size

¥ The FOM 1deally should not $1t 1nto EAM of common attack hardware, such as
bothnet nodes and GPUs, making computation of yescrypt hashes with the RFOM
inefticlent on those devices and letting us benet it +rom server hardware more
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yescrypt REOM

Here 15 an i1llustration of relative sizes (perhaps on a logarithmic scale) of
cores, EAMs, and ROM, also showing some of the regquired interconnect
fm——————— fmm—————— fmm—————— tm—————— tm—————— tm—————— pm——————— pm——————— +
. core |
+ RAM tH=————- H+ +
Lort=% #=port
fmm—————— + | ROM +
Lort=% #=port
+  EAM tH=————- H+ +
| core |
fmm—————— fmm—————— fmm—————— e —————— e fm—————— pm—————— fm——————— -

For mass user authentication, the defensive parallelism may currently be
assumed to come from concurrent authentication requests, with no need to use
yescrypt's ¢ parameter (Just keep 11t at p=1). There‘s also no need to
synchronlze the hash computatlions (except madbe to reduce Ld cache thrashing).
lhen there are not enoudgh concurrent authentication requests, this simely means
the server 1sn't loaded to 1ts tull capacity at the moment - that's OK.



yescrypt: large-scale password hashing

yescryet EOM 1nitlalization

Me could use e.q9. data from Adev/urandom stored on S50, which would be OK, but
yescrypt does oftfer 1ts own way to inltialize the ROM from a seed quickly
fmm—————— fm——————— tm—————— tm——————— tm—————— pm——————— fm——————— +
. core |
fm—————— H+ +
#=port will ke
! RO +
#=port
fmm—————— H+ +
| core |
fmm—————— fmm—————— fmm—————— R fm—————— pm—————— fm——————— -

e reuse yescrypt 1tself, along with 1ts thread-level parallelism support, 1o
have the threads f1ll what they "think" are their private memories, but is
actually our future ROM., In this special mode, yescrypt tells 1tself to expand
the random read-writes phase to cover the runhing time that would have been
spent on the unneeded random reads phase (which wouldn 't have atfected the
memory regqlon’s contents). There are no EAMs et during EOM 1nitialization.
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yescrypet EOM 1nitlalization

First, esach thread +t1lls 1ts "RAM" (actually 1ts portion of the future ROM)
with seed-derived random-looking data. To i1llustrate, we use thread numbers.

fmm————— o ——— o ——— e o pmmm———— pm—m———— o m————— =

| cere |144434144341480440 R4 AL EE A4

ol H+idi1d1d414143444343444444144414143414343414341414111441+
p=idddidd414d41414344444444341434341434141411141141414141

+
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I
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[*.)
I
I
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I
I
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I
I
.}
I
I
.
I
I
.
I
I
.
[*.)
I
™.
.
I
I
[
I
I
-+

| core |dedddddeeddddddddddddedddd e ddddeeddd el ddd s sl
fom———— fom pom———— - pom———— - pom———— e fmm s

e reuse yescrypt 1tself, along with 1ts thread-level parallelism support, 1o
have the threads f1ll what they "think" are their private memories, but is
actually our future ROM., In this special mode, yescrypt tells 1tself to expand
the random read-writes phase to cover the runhing time that would have been
spent on the unneeded random reads phase (which wouldn 't have atfected the
memory regqlon’s contents). There are no EAMs et during EOM 1nitialization.
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yescrypet EOM 1nitlalization

Second, the threads use first half of the EOM as their REOM and proceed with the
random read-writes phase (skipping the sequential writes phase) on second half

fmm————— o pomm——— e pomm———— pmmm———— pmmm——— o =

| cere |14443414410480440L R4 LA E A4

ol H+idi1d41d4141434443434444444444141434141434143414141114411+
p=idddidd414d414143444444444414343414341414111414414141

1111111111111111111111111111222225022 0232202302235+

+
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| ocore (44422l 244l AR 404 2R 4440 R 44042422 22422
fom———— fom———— e fom———— - pom———— - pom———— e o s

e reuse yescrypt 1tself, along with 1ts thread-level parallelism support, 1o
have the threads f1ll what they "think" are their private memories, but is
actually our future ROM., In this special mode, yescrypt tells 1tself to expand
the random read-writes phase to cover the runhing time that would have been
spent on the unneeded random reads phase (which wouldn 't have atfected the
memory regqlon’s contents). There are no EAMs et during EOM 1nitialization.
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yescrypet EOM 1nitlalization

Third, the threads use second half of the ROM as their ROM and proceed with
both the sequential writes and the random read-writes phases on first half
fm——————— fm——————— tm——————— fm——————— tm——————— pm——————— fm——————— +
| core |SeEBS S0 E e e e e Do ooS0555555555
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+
|
|
|
|
|
|
|
it 1§
e
.l
A
’l
l
A
.l
A
’l
.l
"l
el
.l
"l
.l
A
'l
A
.l
.l
A
.l
.l
l
el
.l
l
A
L
ol
l
A
.l
A
.l
.l
A
.l
1
’l
el
LT
T
T
T
T
T
T
T
T
T
T
T
T
.

+

|

|

|

|

|

|

I
i Ly
=)
I
I
™.
)
I
)
I
I
I
I™.J
I
I
™.
I
I
o
I
o N
N
I
I
.1
£
I
.
£
I
I
™.
I
I
. N
I
o N
.0
I
N
4
I
.
-
I
I
N
I
I
™.
.
I
o N
S
I
I
-+

| ocore (44422l 2440l AR 40402 R 4440 R 44042422 22422
fom———— fom———— fom———— - pom———— - pom———— e o s

e reuse yescrypt 1tself, along with 1ts thread-level parallelism support, 1o
have the threads f1ll what they "think" are their private memories, but is
actually our future EOM. In this special mode, dyescrypt tells 1tself to expand
the random read-writes phase to cover the runhing time that would have been
spent on the unneeded random reads phase (which wouldn 't have atfected the
memory regqlon’s contents). There are no EAMs yet during EOM 1nitialization.
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yescrypt: large-scale password hashing
yescrypet EOM 1nitlalization

Finally, the threads use first halt of the ROM as their ROM and proceed with

both the sequential writes and the random read-writes phases on second half
fm——————— fm——————— tm——————— tm——————— tm——————— tm——————— fm——————— +
| core |SeEBS S0 E oo e e D e oo ooS0555555555
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| core |B0000EEEEE00E0EEE0000800000000EE000008888008808888tay
fmm———— fom———— fom———— - pom———— - pom———— pmm———— e fmm s

While we use sequential pass and thread numbers for i1llustrative purposes, the
actual data will look highly random, and will he 1nefficient to partially
recompeute in a much smaller amount of memory. (Yes, ROM TMTO is a concern.!

The last 48 bytes of a EOM are 1ts tag, which yescryet checks +or. This 15 1o
erevent 1hadvertent use of an thcompeletely or 1ncorrectly 1nitialized EOM.
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yescrypet REUOM uparades

ROMs can be nested to allow for upgrades, where the old REOM remains around as
part of the new ROM (rather than regquilring more memory Just for compatibility)

.‘.____

This 15 w
clash., T
ex1stT1ng

———— fmm—————— fmmm————— e fmmmm———— fmmm———— e -
olod HOM g

tagl
——————————————————————————————— + rew RO +
+
tage
———— e o —————— o —————— fmm—————— fmmm————— fmm—————— fmm—————— =

iy the ROM tags are at the end: 1f they were at the beginning, theu'd
e recommended upgarade step 1s 4%, but other upgarades are possible 1f

hashes don‘t need to be upgraded (for which 1t has to be exactly 4x).
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Jescrypt high-level features
. Hash string encoding
+ Transparently encodessdecodes parameters, salt, and hash
- Hash (re-lencryption
+ Freuvents oftline password cracking 1+ only the hash database 15 avallable
. Hash updgrades to higher cost settings without knowledge of passwords
+ 4% growth of REAM (and EOM 1f epresent) per upgrade, for cl¥+ AT etficiency

+ If you can’t afford 4x yet, then 1t°s too early to upgrade (e.g., 2x
upgrades would sventually result 1n only 33X AT efficiency)

- Clilent-side comeutation of almost +1nal yescrypt hashes (Vserver reliet')
1in a way allowing for a stralghttorward extension of SCEAM (RFC o8B2)

+ Untortunately, of limited use bhecause of cache timing concerns
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yescrypt cryptogaraphic security

- Cryptodraphic security of the hash tunction (collision resistance, prelmage
and second preimage resistance’) 1s based on that of SHA-226, HMAC, and PBKDFZ

The hash encryption feature uses provably secure Luby-Rackoff construction
with SHA-256 as the PRF

- The known unfortunate pecullarities of HMAC and FERDFZ are +ully avoilided 1n
the way these primitives are used

i The rest ot processing, while crucial for i1ncreasing the cost of password
cracking attacks, may he considered non-cryptogaraphilc

+ There are entropy bypasses to final PBKDFZ step for hoth password and salt

+ For comparison, scrypt has such entropy bypass for password only
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yescrypt timing satety

Timing satety was considered as part of yescrypt design, meaning that timing
unsafte operations were avolded where practical. That said, untortunately
yescrypt 1s not cache timing sate. (FHIMW, scrypt and borupt are also not
cache timing safe. Argondl and Catena are. )

This 15 a securilty vs, securlty trade-oft: we could have cache timing satety,
but per current knowledge 1t°d result 1n lower THMTO resistance, londger running
time ftor same TMTO resistance, lower memory usade at same runnlng time, andsor
no or likely worse GFU attack resistance at low memory.

In practice, cache timing unsatety of password hashing functlions 15 mitilgated
by use of unpredictable salts, which 1n most cases an attacker won’'t possess
without also having the hashes., [n yescrypt, both offline password cracking
attacks and online cache tTiming attacks given a stolendleaked password hash
database can be further mitigated by use of the bullt-in encryption feature,

OFf course, this fails 1f the encryption key 1s also compromised. The situation
12 tar from pertect, but that's the current trade-off and how 1t°2 resolved,

e recommend deployment on dedicated servers oF at least dedicated MUMA nodes
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yescrypt pros and cons
Fros

¥ Scalable from kilobytes to terabytes and beyond, and separately from a
millisecond to eternity, while providing near-optimally high attack cost

¥ High attack cost across +ull randge of attack hardware, +rom off-the-shel+t
to specilallized

¥ Feature-rich., Can also compute classic scrypt (shared codebase).,

Cons
¥ Complex

+ QK for large-scale deployments, where 1t7s a small percentage of total
complexity e.9. of a user authentication microservice

+ A con and risk for smaller deployments and third-party implementations
+ A future yescrypt-lite andsor popular library support might help

¥ Cache timing unsate
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yescrypt demo setup

On 2x Eo-2e¥h (1t cores, 22 threads) with 128 01F RAM (8x DDRZ-1cd8)
# 112 G1B ROM initialization takes half a minute (on server bootup)

+ Initialization algorithm discourages recomputation on smaller machines
¥ FOM 12 maintalned 1n 2 Sysy shared memory seament

+ This 15 one good way to do 11, althougsh yescrypt AF] does not mandate 1t
¥ Thus, there’'s no delay in our demo "authentication service” (relstart

+ Important for ease of system administration, and o minimize downtime

¥ yescrypt 1s passed a polnter to the ROM wvia an appropriate AR
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yescrypet demo

Linux confilguration: a Bit more than 112 G1B (128 GB) in "huge pages’
[root@super ™18 sysctl -w um.hugetlb_shr_group=-868

um, huget lb_shr_group = S8B

[root@super ™18 sysctl]l -w kernel.shmmax=128259084288

cernel..shmmax = 128259884288

rootiEsuper Y18 sysctl —w kernel.shmal l=2902227 2

cerne]l.shmall = 29822272

root@super Y18 sysctl —w um.nr_hugepages=27E8060

Um. nr_hugepades = 27oob

[root@super ™18 free

total used tree sharec buffers cached
Men : 1321250832 121733836 18391196 816 263608 15242408
-7+ buffersscache: 119946836 12173936
Swap: 5 A 5
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yescrypt demo
112 GiB (128 GB) ROM initialization (31 seconds)

[solar@super yescrypt-8.9.191%F GOMP_CPU_AFFINITY=B8-31 time . initrom 112 1
=14 N=2+18 MHROM=2~"Z
Will use 117448512.88 KiEBE ROM
1792.88 Ki1B RAM
Inttializing KOM ... DONE (2+3%cc2e)
“FyF VBONSLAIMENRBAREI ISR IHOBLIE L $40MEL 1 JaK . MAY IzRxHza+BUmnMMRF YUF w11tV xmNG ., ©
Sok . dbyser 47 .odsystem B:38,.92elapsed 123824%CPU (Havatext+Havadata liolemaxresiden
Tk
Binputs+doutputs (Bmajor+o8e683minoripagetaults Bswaps
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yescrypt demo
112 Gi1B ROM, 1.75 MiIB RAM password hashing test (over 18688 hashes/second)

[solar@super yescrypt-08.9.191% GOMP_CPU_AFFINITY=8-31 . userom 112 1
=14 N=2+18 MHROM=2"Z
Will use 11”449512 BB KiBE ROM
1792.88 KiB RAM
Flaintext:
“$UF ITBENSLAdIMENPBABIIZhIHJBAEL . $40Wk 1 JaK . MAT IzRxHzaFfBUmnMMRF YUF uEG1 1t VemNG, ¢
Encrypted:
“$UFITESNFLAIMENPEBABIIJShIHJEBLAEL . $FADHIGUHCAS INTaHafrRE7hE8afBreylCMe /unEUyATL
Benchmarking 1 thread
647 o/ real, 621 cfs wvirtual (18223 hashes 1n 1.28 seconds)
Benchmark ing 32 threads ...
18438 c/=s real, 338 css virtual (15345 hashes in 1.47 seconds)

He set CPU a+finity on these tests, Eesults are similar, but somewhat less

=table without that setting. A sService using yescryet could do this too, but
even if it doesn‘t it'd be likely impacted less than the "userom" program is,
since UpenMF needs thread synchronization while user authentication wouldn’t.
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yescrypt demo

Password hashing microservice using yescrupt at 112 GiB HGH 1.75 MiB RAM -
status page (when testing, non-production, hence so many "new hash regquests')
Service uptime 6E6E seconds (12.34 since last status)
Hashing reduests &2lesb0l, 1824272 (126425, 1BZ248/75)
QK 621686881, 188.88%, 18245/ (126455, 1868.88%, 18248/s)
Erear W, B, 80%, B2 (B, B.88%, H/s)
Bad JSON W, B,8d0% of all errors (8, d,88%)
Failled/refused B, d.88% of all errors (8, d,08%)
New hash requests 62892545, 99.88%, 1bB233/s (126388, 99.88%, 1B235/s)
Mew hash OK 62892545, 188.88% of new hash requests

New hash error

verilty requests
Yerity O
Yerify error

B, 8.88% of new hash requests

Too36, B.12%, 12/ (155, B.12%, 13/s)
Vooab, 18B,88% of verify requests
W, B,88% of verify requests

-
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yescrypt demo
112 GiB ROM, 3.2 MIB RAM password hashing test (ouver SBBB hashes/second)

[solar@super yescrypt-08.9.191% GOMP_CPU_AFFINITY=8-31 . userom 112 3
=14 N=2+11 MROM=2~+Z
Will use 117448512.88 KiB ROM
Jo84.868 KiB RAM
Flaintext:
“$y ¥ JSBENSLAIMENPBABIIShIHJBAB1 . $uv2V7rpNIzaufHMESNNLaZ23 IrB8ZbPRrS=xPSiobS j0K1Jil"
Encrypted:
Sy dI8BEN$LAdIMENRBABIISKIHJBLEL . $asasl13redll. JSAr9t M Bronmuc TS43bEne . DoBVYHL ¢
Benchmarking 1 thread ...
J33 o/ real, 333 cfs wvirtual (311 hashes in 1.23 seconds)
Benchmark ing 32 threads ...
=118 c/s real, 168 c/s virtual (7665 hashes i1n 1.58 seconds)
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yescrypt demo
112 GiB ROM, 14 MiB RAM password hashing test (owver 18868 hashes/ssecond)

[solar@super yescrypt-8.9.191%F GOMP_CPU_AFFINITY=B8-31 . userom 112 14
=14 N=2+13 MROM=2+Z
Will use 117448512.88 KiEBE ROM

14336.88 K1EBE RAM
Flaintext:
“$UFIABSNSLAIMENRBRAEBIIZRIHJEBAEL . $CrspoBomI7aml . ME0O7xLwnye JBZ23mL xMwI 7t WChixE "
Encrypted:
“$YFIJABSNELAdIMENRPBABIIJShIHJBAEB1 . $22092F . 1E62c I E.ziUvS 1 j65GBaJaJLu/cDQ99 Inkig -
Benchmarking 1 thread ...
81 c/s real, 81 c/s virtual (127 hashes 1n 1.2% seconds)
Benchmark ing 32 threads ...
1876 css real, 3% cfs virtual (1985 hashes 1n 1.77 seconds)
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yescrypt demo
Here’'s what the SysV shm segment looked like, and how to destroy 1t
[solardsuper yescrypt-B.9.191% 1pcs -m

—————— Shared Memory Segments ---—-=—--

L2y shmid ouner Lerms hutes nattch status
Hx V9627 30a o236 solar &4 128229884288 4
[solar@suyper yescrypt-6.9,.191% ipcrm -M Bx7965738a

[solar@super yescrypt-H.9.191%
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yescrypt demo
Mo ROM, 2 MiB RAM password hashing test (ouer 18888 hashes/second)

[solar@super yescrypt-8.9.191% GOMP_CPU_AFFINITY=8-31 . userom B8 2
=3 M=Z2+11 NREOM=2-8
Mill use B.868 KiBE ROM
2843.88 KiB RAM
Flaintext:

Encrypted:

“$ys 85 $LdIMENRBAREIJ ISR IHJEB1E L. $2882p58Dexhecdpmbdw ] y3CHMeINSG2eAORYFKpde jewd ¢
Benchmarking 1 thread ...

591 c/s real, 891 c/s wvirtual (18223 hashes 1n 1.458 seconds)

Benchmark ing 32 threads ...

18968 c/=s real, 344 cs/s virtual (15345 hashes in 1.48 seconds)
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yescrypt demo
Mo REOM, 16 M1IE EAM password hashing test (ouver 188BH hashes/second)

[solar@super yescrypt-8.9.191% GOMP_CPU_AFFINITY=B-31 . userom B 16
=3 M=Z2+14 NREOM=2-8
Mill use B.868 KiB ROM
16384.88 KiB RAM
Flaintext:

‘$uFIBSSLAdIMENPBABIJI3RIHIBAEL ., $pQdH ./ . PtwBBESL jebnsfO0f20TSRaDG A/t ZbatmlEXAL
Encrypted:
“$YFIBSSLAdIMENRBREJ ISR IHJEBLE L. $tRBcZx 0T pdEultZ2K1Pd .. NeALHSdJEK ICeosHSnx YORAG
Benchmarking 1 thread ...

88 o5 real, 88 c/ss virtual (127 hashes 1n 1.44 seconds)
Benchmark ing 32 threads ...
1824 css real, 32 cofs virtual (1985 hashes 1n 1.86 seconds)
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Thanks

colin Percival
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Lontact information

e-mail

Solar Designer {solar@openwall.com?

Twitter
@solardiliz @0penwall

website
Lt A, openwall.com
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