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INTRODUCTION

Overview

This project describes an effort to parallelize John the Ripper [1] (John), an open-source
password cracking software package. This type of work is relevant to Information Technology
(IT) security for different reasons. With increasing availability of high performance computing
resources, it is important to understand the abilities of would be attackers. By reinforcing back
of the envelope calculations with experimental data, system administrators can better gauge the
security of their systems and plan accordingly. Second, tools that result from projects like this
give administrators the ability to efficiently check the security of their systems. They can scan
for weak passwords that are likely to be cracked by others using similar tools.

UNIX Passwords

Most UNIX systems use a username/password combination as the only real barrier
preventing unwanted access to system resources. It follows that the security of the system
depends quite heavily on the security of the password/authentication system. Almost all
accounts on a UNIX system have a password assigned to it. The passwords are not stored in
plaintext, but instead, they are encoded (“hashed”) using a modified encryption algorithm. By
default, most UNIX systems use the crypt() library function [2], which is based on the standard
Data Encryption System (DES). This hashing process is similar to regular encryption, but it is a
one-way hash function. This means that it is a straightforward process to take a plain-text word
and obtain its hash, but it is considered computationally infeasible to do the reverse. Passwords
can be up to 8 characters in length. The algorithm takes the 7 lower order bits from each
character and packs them into a 56-bit string. This key is used by the algorithm to hash a
constant string normally consisting of all zeros. A randomly generated two character “salt” is
used to perturb this encryption in one of 4096 different ways. The result is the hash consisting of
13 printable ASCII characters. The first two characters are the salt that was used to help
generate the hash.

UNIX uses the /etc/passwd file to store login information. It has entries of the form:
smithj :wOWQfwTXWRB.I:561:561:Joe Smith:/home/smithj:/bin/bash

The fields are delimited by colons and represent the following:
- loginid

- password hash

- numeric user id

- numeric group id

- full user name

- home directory

- shell

When a user attempts to login, the password entered is hashed using the same algorithm. The
result is compared with the password hash in the corresponding entry for the user. If there is a
match, the user is authenticated. In older or distributed environment, the password file can be
obtained by any user. This is a tremendous security risk and the security community developed
shadow password to safeguard the password file. Shadowed password files are used by default
on most systems now, and this hides the password hash information from everyone but the root
user.



Cracking UNIX Passwords

Password cracking programs can be easily found on the Internet. John is one of the more
popular and powerful programs, but they all operate in similar ways. They presume that the user
has a list of password hashes and the user wants to know the corresponding passwords. Cracking
programs successively generate different candidate passwords; encrypt them with the same
algorithm used in the password file, and compare the results. If the hashes are the same, then the
password has been cracked. The main difference between different cracking programs is the
way they generate the candidate passwords.

They normally use one of two approaches. Brute-force style attacks are the most powerful,
but also the most time consuming. This technique works by hashing every possible character
combination that is a valid password. This method is considered infallible - it will eventually
crack any given password. However, given that there are about 95 valid characters and assuming
passwords up to 8 characters in length, there are about 6 quadrillion different passwords. It
would take a 1.5 GHz single processor machine approximately 2000 years to generate every
possible hash (using John).

Many users however, do not use random strings of characters as passwords. Dictionary
words or phrases are commonly used and this drastically reduces the size of the password space.
Dictionary attacks take advantage of this fact and employ a large file containing words, which
are used by the program to generate candidate passwords. Rules can also be incorporated that
modify the words in the dictionary by adding different punctuation, changing capitalization, etc.
This method is much quicker at identifying so called 'weak' passwords, but can't easily crack
passwords that contain random characters. John the Ripper is capable of performing both brute
force and dictionary attacks.

Previous Work

The idea of applying high performance computing resources to password cracking is not
new. The San Diego Super Computer Center [3] has performed two related projects. Both
focused on UNIX passwords generated with the cryp#() function. The first, Tablecrack, started
in 1997. Over the course of two weeks, they used a number of workstations to pre-compute the
hashes to 51 million common passwords. This generated 1.1 terabytes of data, and was stored on
SDSC's large archival tape storage system. These stored hashes represent weak passwords, and
SDSC used this system for a couple of years to identify weak passwords. The storage
requirement for this project was considered huge in 1997, but is not too significant by today’s
standards. SDSC's next project was called Teracrack. One of the main purposes of this project
was to demonstrate that the cryp#() function should be considered obsolete for generating
password hashes. They used Blue Horizon to calculate the hashes of 50 million common
passwords, which took 81 minutes and 2 terabytes of storage. They extrapolated these results to
predict that an attacker, perhaps using a large number of compromised machines, could duplicate
their results in a couple of days.

There have been other projects that have used hardware resources far more readily accessible
to the public. The dkbf (Distributed Keyboard Brute Force) program [4] is a parallel
implementation of LOphtCrack using MPI. It was designed to crack Windows LANMAN and
NT hashes. In the documentation for their program (which was written in 2000) they estimated
that using a cheap 8-node cluster (*3000) any NT password can be cracked within 35 days. This
would be both considerably faster and cheaper today. In a similar project, R. Lim of the

2



University of Nebraska-Lincoln parallelized John using MPI [5]. In his implementation, he
focused on the brute-force mode by giving different parts of the key-space to the processes
involved. He achieved the performance he expected, but suggested that more work could be
done to take advantage of John’s various cracking modes.



JOHN-MPI

Our Approach and Parallelization Schemes

Our intent was to parallelize John to perform dictionary attacks. In contrast to Lim's work,
which is better for a concentrated attack on a single password; our program will be better suited
for quickly scanning an entire password file for weak passwords. This makes it more useful to
administrators as a security tool. We used the Message Passing Interface (MPI) for inter-process
communication, and concentrated on passwords generated with the UNIX cryp#() function,
though John is capable of handling MDS5 and many other hashing schemes. Password cracking is
inherently very parallelizable; the hashing attempts are all independent of each other. John is
already quite good at performing serial dictionary attacks. We wanted to find the best way to
partition the problem for efficient parallelization. We considered the three different techniques
described below.

Because John uses a large word list file to perform the dictionary crack, this word list can be
broken up into equal pieces and distributed to each process involved. Each process would then
try to crack each password using only the words it has. Uncracked passwords could then be
passed onto the next process. This technique would also provide a means for concentrating a
dictionary attack on a single password, by giving the same hash to all processes simultaneously.
Because each process only has a part of the dictionary, memory requirements are relaxed.
Proper coordination to ensure load balance between processes is essential, but difficult. It is
impossible to tell beforehand how long each process will spend trying to crack each hash, and
there is a very good chance that processes will be idle waiting for one another.

Instead of splitting the dictionary we could split the password hashes amongst the processes
involved. Each process would then effectively perform a serial crack on the reduced password
list assigned to it. This would require that each process keep an entire copy of the dictionary in
memory, but the coordination between processes would be greatly reduced. Load balancing is
still an issue, because it is unlikely that each process was assigned a list of equal strength
passwords. Some processes are likely to finish with their list before others, and sit idle. It would
be very difficult to know the difficulty of passwords beforehand (that is the point of running John
in the first place).

Finally, a work-sharing scheme could be used. One process could act as a dealer, handing
out password hashes to worker processes, who would then proceed with the cracking attempt as
usual. This requires each worker to have the entire word list in memory, but load balancing is
ensured because once a process finishes with a cracking attempt, it is given more to do by the
dealer. At the end of the password list some processes may sit idle while others finish with the
last password hashes. The dealer process also may become a performance bottleneck if it is
overloaded and workers are sitting idle while waiting for more work. This is the method we
chose to parallelize John. We felt that the parallelization issues described above would be easiest
to overcome in this case. The particulars of the MPI interface would also be better suited to an
approach of this nature.

Topology

Most clusters usually have some disk storage available to all nodes as well as some local disk
storage for temporary use. The root node (the “dealer”) uses the global storage to store the
passwords to be cracked as well as the results of the attempts. In order to keep the results

4



consistent, the compute nodes (the “workers”) use the central storage for the wordlist and attack
rules. The workers also use the local storage to simulate a global storage in order to keep the
changes to John as small as possible.

When using cluster2.cs.ucsb.edu (cluster2), the global, shared storage is located at
/cluster with the local storage being located at /tmp. MPI communicates to each node in the
cluster via a 1 Gb/s Ethernet switch.

Figure 1: John-MPI Topology

ster/..

* Dictionary * Password
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Modus Operandi

There are several distinct operational modes: initialization of MPI for both the dealer and
worker nodes, attempts to crack passwords, and termination.

Initialization

Like most MPI programs, john-mpi has a single process that parses the command line
options and then invokes MPI_Init(). Once all processes have started, each determines its rank
within the MPI communicator. Rank O becomes the dealer, while all others become workers.
The dealer will not perform any password cracking and is reserving itself to handle the bulk of
the communication between processes.

When the dealer starts up, it reads in the specified password file, and sorts it based on the
password hash. Since the encrypting salt is prepended to the password hash, this groups all
password hashes with the same salt together. By passing all of the passwords with the same salt
to the same process, this allows it to encrypt each word in the dictionary once and compare it
against multiple passwords. After sorting the entries, it creates a linked list of “work messages”.
Each work message can contain up to 20 different password entries. In a weak attempt to
increase security, the login identifier is not transmitted with the hash.



Each worker starts up and immediately calls MPI_Recv() on the dealer in order to get
something to work on. While the dealer is working on the sorting and preparation of work
messages, these processes simply block.

Runtime

Once the worker gets a work message, it writes the contents of that message to a temporary
password file on its local disk, and then calls the serial John to start the cracking process. The
first step in the serial John is to load the dictionary and rules, then loop through the password file
attempting to crack each entry. If a match is found, the word is written to a results file
(john.pot). If there are no more passwords to crack, the serial portion of John then invokes its
shutdown, and exits. Our code then picks up any results, puts them back into the work message,
adds some timing information, and sends the results back to the dealer. Then calls MPI_Recv()
again, blocking until more work is available.

The dealer simply accepts the results from the workers, logs the result, and gives it some
more work.

Termination

Once all passwords are processed, the dealer sends to each worker that is requesting more
work a special shutdown message. Once all the workers are told to shutdown, the dealer then
computes the final statistics, writes them to the results file and then enters a barrier and waits for
all processes to finish up. Upon receiving the shutdown message, the worker cleans up and then
enters the barrier. Once all processes are in the barrier, all processes exit and the MPI
communicator group shuts down gracefully.



RESULTS

Expected

The performance metric used for John is “cracks per second”. This is not actually the
number of passwords cracked, but really should be called “attempts per second”, since it refers to
the number of times per second a dictionary word is encrypted and compared to the password to
see if there is a match.

We expected to achieve a linear speedup of the cracks per second with respect to the number
of processes applied to the job. This implementation of a parallel John the Ripper is
embarrassingly parallel, with minimal communication, and a single synchronization at the very
end. Communication only happens between the dealer and workers. The messages themselves
are quite small.

Since the startup time of the serial John requires loading the dictionary file for each set of
passwords, it was a concern that this would slow the program down. However, initial testing
showed that the time spent cracking the passwords overwhelmed the startup and shutdown times.

Actual

We ran the first test on cluster2 with 2, 4, 6, 8, 10, 12, and 14 processes. Cluster2isa
“beowulf” cluster of 32 systems. Each node has two 2.6GHz Intel® Xeon™ processors with
3GB of memory attached by a 533MHz front-side bus. Access to the nodes is controlled by the
Portable Batch System (PBS) [6]. Each compute node in the cluster initializes two processes
(one for each CPU). Since the dealer does not do any password cracking itself, one node was
subtracted from the performance computation.

The first test run was done with 15 known and easy passwords.
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The regression line on the above graph demonstrates our expected linear speed-up. As
expected, the two process (1 dealer, 1 worker) test ran slightly slower than a single serial test.
While the speedup wasn’t 100% for each process added to the test, the speedup was consistent —
a little more than 1/3 improved performance for each node added.

Table 1: Test #1

Nodes Serial 1 3 5 7 9 11 13

ks | 206947 | 253996 | 447864 | 564928 | 719649 | 1053290 | 1008511 | 1483690
Soeedu 86% | 151% | 190% | 242% | 355% | 340% | 500%
peedup 0.86x | 050x | 038x | 035x | 039x | 031x | 0.38x

A question was raised whether or not the dealer would be become a bottleneck. Additional
timing was added to calculate the amount of time spent by the dealer just waiting for input. With
3 workers on the above list of easy passwords, the total run time was 17 seconds. The dealer
spent 12.4 of those seconds blocked waiting for input.

The second test was an attempt to validate the security of the existing College of Engineering
(CoE) passwords. Besides periodically running the entire password file through John, they also
test all new passwords against it. Running John against the CoE password file should not expose
any weak passwords, our test differing only by the word list being used.

In order to minimize security risks, we cleaned the CoE password file, removing all
information except the password hash. There were 3,893 password entries in the file with 2,391
unique salts. Unfortunately, that was still too much work for my allowable CPU quota, and the
job was killed after about 15 hours:

PBS: job killed: cput job total 173522 secs exceeded limit 172800 secs

172,800 seconds is 2880 minutes, or 48 hours. This run was able to process 274 passwords,
with only one successful crack.

Another test with fewer passwords (200 entries with 196 unique salts) was performed. Due
to an error in our code, we were not able to get the total cracks per second metric, but it was able
to complete the file in 2:08:03 wall clock time, with a total of 30:59:27 compute time. During
this run, five accounts were found with weak passwords, three of which were already shutdown.
The dealer spent 91% of its time waiting for a worker to communicate.




CONCLUSIONS

When first investigating this project, there were two primary goals: converting a serial
version of John into a parallel version while making minimal modifications (“wrapping” the
code) and providing a tool for system administrators to quickly check their accounts for easy
passwords.

The changes made to the serial code were minimal. By replacing the entry point (main with
worker main) and adding some helper functions to get information out of John directly, this
was achieved. Some other changes to the recovery system were necessary as John does not
expect simultaneous invocations. Adding the process id to all files allowed multiple instances to
be run on the same machine (as they are on cluster2). Although this invalidated John’s
recovery system, this was acceptable since the parallel wrapper could implement its own.

When running John against the College of Engineering’s password file, it validated that the
existing security measures are sufficient for preventing against a dictionary attack.



FUTURE WORK

The original goal of this project was to perform minimal modifications to John. This was
successful, but at a performance cost. Each time the worker tries to crack a password, it needs to
re-initialize itself. This causes a delay as the worker loads and indexes the dictionary and the
rules. This should be done only once. Also, John outputs its performance statistics (cracks per
second) to the console via standard error. This forces our program to grab hold of standard error
and redirect (possibly vital) system information. It would be better to grab hold of that
information directly, allowing debugging and error messages be displayed to the console. Both
of these tasks would require more in-depth modification to John’s code than we felt wise to do at
this point in time.

We used the latest version of John that was tested, and known to be stable (version 1.6).
However, a newer development version has been released (1.6.37) that is supposed to have many
performance improvements in it. We made no effort in trying to improve the performance of the
serial code, however. Since this implementation is almost embarrassingly parallel, we felt it was
best not to modify the serial password encryption implementation and focus on making John
v1.6 parallel.

Version 1.6 is unable to compile on machines with 64-bit architecture due to some low-level
bit twiddling to simulate 64-bit operations. As 64-bit machines become more and more
common, replacing the software emulation of the 64-bit arithmetic with a hardware
implementation may gain significant improvements.
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