Breaking UNIX crypt() on the
PlayStation 3

Marc Bevand

m.bevand@gmail.com
marc.bevand@rapid/.com

Plan

DES-based UNIX crypt() password hashes
Bitslice DES

PlayStation 3's Cell B.E. processor

DES S-Boxes optimized for the Cell
Results in numbers: perf/$, perf/W

Isn't UNIX crypt() 30+ years old ?

WTE ?

DES-based UNIX crypt()

= Frequently used in large, legacy UNIX
environments

= Still the default in Solaris 10 as well as latest
Nevada builds (see CRYPT _DEFAULT 1n

/etc/security/policy.cont)

= Even 1n 2008, there 1s value in optimizing the
bruteforcing of UNIX crypt() password hashes

Quick reminder

= UNIX crypt() algorithm:

= Build a 56-bit key from the passwd

= Pick a random 12-bit salt to perturb the E box of the DES
algorithm

= DES-encrypt 25 times an all-bits-zero block

= Passwords limited to 8 chars

= Salt makes pre-computed attacks 4096 times costlier

Best bruteforcing tool (so far)

= Bitslice DES implemented by Dr Eli Biham 1in 1997

= Represents the most computing intensive part of DES (S-
Boxes) as series of logical instructions on 1-bit values

= On N-bit processors, a bitslice implementation performs
N encryptions/decryptions in parallel

= Implemented in John the Ripper (S-Boxes from
Matthew Kwan): 8.8 Mpw/s on quad-core Q6700 @
2.66 Ghz (2.2 Mpw/s/core, only one salt”)

Bitslice DES

One S-box maps a 6-bit input to a 4-bit output
3 S-boxes total: S1..S8

Each S-box can be represented by a logical circuit
using gates such as AND, OR, XOR, etc

Find the circuits with the smallest number of gates

No good algorithm 1s known to find the best circuits,
bruteforcing 1s the only solution

Bitslice DES on the Cell B.E.

PlayStation 3 processor 1s the Cell B.E.
Particularly well adapted to bitslice DES
7 usable cores @ 3.2 GHz: 1 PPU + 6 SPUs

Each SPU: 128 registers, 128-bit each (128-way
bitslicing !)

The ISA defines all the integer and boolean
instructions needed, 1n particular: selb (mux), orc (or
not), andc (and not)

Bruteforcing the S-box circuits

= A tool has been implemented based on 1deas
presented by Kwan:

= Construct iteratively a data structure representing the
circuit with its lines and gates (initially, i1t contains only 6
input lines representing the 6-bit input)

= Randomly add simple series of gates to try to find the
output bits

= If 1t doesn't work, add a selb gate to reduce the pb to two
5-bit problems, then 4-bit pbs, etc

= This tool will be released as open source

Optimized S-box circuits

= Takes ~2 hours of bruteforcing to finally find
8 circuits with an average of 45.5 gates:

= S1, ..., S8: 50, 46, 46, 34, 50, 47, 46, 45 gates

= 10.7% theoretical improvement over Kwan's best
result of 51 gates

= Note: unverified claim of "less than 40 gates™ by
Dag Arne Osvik and Eran Tromer (don't reply to
email): http://www.hyperelliptic.org/SPEED/slides/Osvik_cell-speed.pdf

Implementation details

Each SPU has 2 pipelines (0: even, 1: odd) and can
1ssue and complete up to 2 instructions/clock

spu_timing: static timing analysis tool
All logical instructions: pipeline 0, 2-clock latency

For good results:

= Instruction N should not depend on N-1 (validate with
spu_timing)

= Execute hbr (Hint for Branch) for return instr. ’bi $0”

Now what ?

Profit ?

Yes ! Bitslice DES 1s all about the S-boxes, nothing
else needs to be optimized

Key schedule, E-box, P-box, initial and final
permutations, etc: all of these can be hardcoded and
are zero-cost operations 1n a bitslice implementation

What about the salt ?

= Used to swap some of the E-box output bits

= Again, can be hardcoded and 1s a zero-cost
operation

Results

= PlayStation 3, Cell's 6 SPUs @ 3.2 Ghz:

= Bruteforcing speed =

11.5 million password/sec
= Compare to 8.8 Mpw/sec for quad-core Q6700

Performance / price

= Pert/price ratio 1.6x better than current best
implementation:

= PS3: street price US$400: 28.8k passwd/sec/$

= JtR on Q6700: about US$500 (stripped-down cluster
node: mobo, CPU, RAM, PSU only): 17.6k passwd/sec/$

Performance / watt

= Don't forget pert/watt — hardware prices are
becoming negligible compared to energy costs

= Perf/watt ratio 1.5x better than current best:

= PS3: about 130W (with 65nm Cell): 88.5k passwd/sec/W

= JtR on Q6700: about 150W (stripped-down cluster
node): 58.7k passwd/sec/W

Conclusion

= Full printable password space = 95%*8 + ... + 95%*(

= A $20k investment in 50 PS3s can bruteforce any
password 1n 135 days worst case, 67 days average

= Assuming $0.1/kWh, the energy cost would be
$2100 worst case, $1050 average

= Possible further improvements: use the PPU
(+17%), get down to 40 gates (another +12%)

See also

= Slides + source code will be available at:
http://epitech.net/~bevand_m

