RSA Laboratories

PKCS#11 v2.1: Cryptographic Token Interface Standard
RSA Laboratories

Proposed Draft 1 -- July 20, 1999

Table of Contents

[70 R 19 =S T VI T - S 14..)

LT € = | = =Y I Y, o =

6.3 LOGICAL VIEW OF A TOKEN 1.uutituituetneertttsneetnettnseseetnessnseseetsssestessassttestaessasstiesaessierneees ceeTTT

L T U = L

6.5 APPLICATIONS AND THEIR USE OF CRYPTOKI
6.5.1 APPliCatiONS QNG PIrOCESSES.cciveierrirtertestesteeeeeeseestessestestesseaseeseessestestestessessesseeseessensessesns
6.5.2 Applications and threads...........ccocveiiiiiiieceree e 18

(S SIS =SS0)N T PSPPI &
6.6.1 Read-0NlY SESSION SLALESccveivieiirieceeeeeieestes e et se e e e e se e e sreste e e re e e e e eneesaentesaesrenneenre e
6.6.2 ReAd/WIITE SESSION SLALESeeiieeciee ettt sttt e et e e st e e e ae e s be e e neeenbeeereeeanes
6.6.3 Permitted object accesses by sessions
B.6.4 SESSION EVENESueieiee ettt ettt st e st e e eae e e s abe e st e e s ab e e e e e e sabe e e b e e eabeeeareesateeereeeareeereeeares
6.6.5 Session handles and object handlEes.............cocvveierieie e 23
6.6.6 CapabilitiES Of SESSIONS.......ccicieieieie et sttt s e et snesre e e e e aeseenre e
6.6.7 Example Of USE Of SESSIONS........cccueiieiieiieie ettt e e e st ste e e e sneenneeee e 24

6.7 SECONDARY AUTHENTICATION .. .tttutetttueeteteeseueestueeeaneranneestnaeetneeanneeetaaeesnnaeennaeesnnaeesnsssnseeiTiTes
6.7.1 Using Keys Protected by Secondary Authentication............ccccocvvereeeeieeie s 28

Copyright [1994-1999 RSA Laboratories, a division of RSA Data Security, Inc., a Security Dynamics
company. License to copy this document is granted provided that it is identified as “RSA Data Security, Inc.
Public-Key Cryptography Standards (PKCS)” in all material mentioning or referencing this document.
RSA, RC2, RC4, RC5, MD2, and MD5 are registered trademarks of RSA Data Security, Inc. The RSA
public-key cryptosystem is protected by U.S. Patent #4,405,829. RSA Data Security, Inc., has patent
pending on the RC5 cipher. CAST, CAST3, CAST5, and CAST128 are registered trademarks of Entrust
Technologies. OS/2 and CDMF (Commercial Data Masking Facility) are registered trademarks of
International Business Machines Corporation. LYNKS is a registered trademark of SPYRUS Corporation.
IDEA is a registered trademark of Ascom Systec. Windows, Windows 3.1, Windows 95, Windows NT, and
Developer Studio are registered trademarks of Microsoft Corporation. UNIX is a registered trademark of
UNIX System Laboratories. FORTEZZA is a registered trademark of the National Security Agency.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD i

6.7.2 Generating Private Keys Protected by Secondary Authenticationccccooeveneinennee 2829
6.7.3 Changing the Secondary Authentication PIN ValUe............ccccooeoninineinineneeeeseeee 29
6.8 FUNCTION OVERVIEW ... ctuiiiiteeiti e et e e et e e te e et ee e et e e et e e e at e e eaa e s et e e e ta e e ean e s aanestaaeesnessnneestnaassnnnaes 29
7. SECURITY CONSIDERATIONS ... oottt sttt sttt et e s te e st esnre s steesnre e sraesnnee s 3234
8. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVESFOR C OR C++ 3336
8.1 STRUCTURE PACKING .. .ctuuiiitnteitie ettt e ettt e e ete e et e e eae e et eeett e e et eesteeetnsesstnestneestnsessnnesesneseesTiTiens 3330
8.2 POINTER-RELATED MACROScctuiiitieeitteiiteeeiteeeett e esteestiaeeetneessneestneeeetneessnaeesrneessnneessnenesiries 34360
¢ (O G I o SRR 3436
¢ CK _DEFINE_FUNCTION ..ottt citie ettt e esiee st sesaeessta s esee s taeenesssasesneesteeenneesnses 3436
¢ CK_DECLARE _FUNCTION.....ciiiitiiitesieeesteeesee e eeestee et seaeeesta e eses e taeessesesaseneesnsassnseesnses 3437
¢ CK_DECLARE_FUNCTION _POINTER.......ccoiitiiiieiiecstie et esee e st nnee s 3437
¢ CK_CALLBACK FUNCTION.....ccttiiitesie e siteesee e steesiee s saeesiee e staeessae e staeessne e ssaeessneessaeennneensns 3537
¢ N 11 I SRS SRPSI 3538
8.3 SAMPLE PLATFORM- AND COMPILER-DEPENDENT CODEcccivuieiiieeitieeeeineeeiieeeeineeseneeennesnnn . ir 3038
S TR T00 R VLY 110 12 SO 3538
8.3.2 WMINLB ..ottt et ettt e et e et e et e e be e e ba e e be e e be e e abe e e baeebeeebeeeaneesabeenareas 3639
R R T €= o = (o2 U 1N SRRSO 3739
9. GENERAL DATA TYPES ... oottt ettt s te e s ae e s te e et e e sate e sane e snreesanee s 3840
0.1 (ENERAL INFORMATION ...ttt tttettetteetetteeaestestsesestesasstesteesnsstsesnasstiesneesnaesnresnessnreenns e 3840
¢ CK_VERSION; CK_VERSION _PTR.....ccctiititieeisieseeneeseeiesee e sree e e ssesnessneseesseessesnsenns 3840
¢ CK_INFO; CK_INFO _PTR...ccece ettt ee st e e e e e see e sneesneenaseneennesneessnensanns 3941
¢ (O (O 2 11 17 1 SR 3941
0.2 S OT AND TOKEN TY PES . tuitutituittniitettetteetaeetettaeetestertaestieeteesttestieresstierteeseesresiessnneenns .. 4042
¢ CK_SLOT _ID; CK_SLOT ID_PTR ...eei ettt ettt sne s s enne s 4042
¢ CK_SLOT_INFO; CK_SLOT_INFO _PTR ..ot iii e eee e 4042
¢ CK_TOKEN_INFO; CK_TOKEN_INFO_PTR.....cceteierieseeieeir e seeseese s enne e sveesseenseens 4244
L IR TS =SS0 I 2 = = TP TNTRUPTRPPRES © S ¥ £
¢ CK_SESSON_HANDLE; CK_SESSION_HANDLE_PTR......ccceeiireeiiee e 4749
¢ (O Q8 1S = I 4 =S 4749
¢ (O S] 17 I =SOSR 4749
¢ CK_SESION_INFO; CK_SESSION _INFO_PTR..cciiit e s 4850
L © = N = ol 1 = =1 T PR20Q....48
¢ CK_OBJECT_HANDLE; CK_OBJECT HANDLE PTR.....ccceiitiitii e ee e 4850
¢ CK_OBJECT_CLASS, CK_OBJECT_CLASS PTR....ccetoieeeece et sne e 4951
¢ CK_HW _FEATURE _TYPE ... oottt e sneenesae e e sneenneenseens 4951
¢ (O S 1 = N I (=SSR 5052
¢ CK_CERTIFICATE _TYPE ... e iee ettt ste st ee e te e e ssae s sseesneesaeetesaesnnesneesseenseensenns 5153
¢ CK _ATTRIBUTE _TYPE ..o it e ie sttt steeste et s et e e sstessessseesneesneesseeansnnesnsessennsesnsenns 5153
¢ CK_ATTRIBUTE; CK_ATTRIBUTE _PTR ..ot iiieieeeeieee e see e see et see e e sae e 5254
¢ L S A I =S 5355
0.5 DATA TYPESFOR MECHANISMS .. ouuiituiitiiitiiitneitittteetesteetestesaeetesteesestessasetiertaersnesnaeres e, D456
¢ CK_MECHANISM_TYPE; CK_MECHANISM_TYPE_PTR......cccitrieve e 5456
¢ CK_MECHANISM; CK_MECHANISM_PTR ..ottt cie e se e ses e e sre e e e 5759
¢ CK_MECHANISM_INFO; CK_MECHANISM_INFO_PTR.....cciieieeere e seese e 5860
LI I = U] o 0] N I = =1 TN e D961
¢ L S L RSOSSN 6062
¢ (O S 1 [2 1 1 PSS 6264
¢ (O S 0 USSR 6264

Copyright © 1994-1999 RSA Laboratories.

10.

11.

Page i

4 CK_FUNCTION_LIST; CK_FUNCTION_LIST_PTR; CK_FUNCTION_LIST_PTR_PTR.. 6264

9.7 LOCKING-RELATED TYPES.....ceiiuttttttesiiuutseseesisssssseseesanssssessessasssssseeessansssssesssssnssssssesssnnssnes e
¢ CK CREATEMUTEX ... ittt ettt ettt et e et e st e st s sse e s taeeseeentaeeneeenteeeneeanres 6466
¢ CK _DESTROYMUTEX....ciiiiiiititeitiesitesesieesstes et e et eesaee st eeaeestasssesantaeesessntaseseeantesansessnses 6567
¢ CK_LOCKMUTEX and CK_UNLOCKMUTEXccoeiieiieite e e sre e esre e sveesreenraens 6567
¢ CK_C INITIALIZE_ARGS CK_C_INITIALIZE_ARGS PTR....coceverrerierrereinrersensensensenseneon. 6668
L@ SN O 1S TSSO 6870
10.1 (REATING, MODIFYING, AND COPYING OBJIECTS ..uituiitneiteitneeteetertaestiestesnaesniesneesniesnees .09
0 50 I R 1 = 1] o [o] = £ 7072
0 50 2 |V oo 13 Y/ o [o] = £ 7173
0 50 TG T @0 o)1 0[] o= ox 7273
10.2 COMMON ATTRIBUTES. et utttttttettettestesetiesueesteeaneesesteeseetsessetaestaesttestaesaaestiessessnsesns e
10.3 HARDWARE FEATURE OBJIECT S, . etuiituiiteitieiteitieeteeetestiesnesstiesteesnessssesnessssesneesnessnsesnessnseesrre N
0 50 R 1 oo Q@ o 1= ox S 7375
JORC T2 IV 1019 10 (o) Yol @010 0] (= @ o= v L= 0 7476
10.4 S ORAGE OBUIECT S et itttttitttiett ettt ettt et e et e et e et e et e et e et s et e et e st s st essassssansesnssnsesnessnsssnsea TR ees
10.5 D N0 = = o =TSRRI e
10.6 ERTIFICATE OBJIECT S 1 ttutittitteetetteetesettesteesteeat ettt eaeeteeseeteetaestiestaesaasstiesnessnsesns e
10.6.1 X.509 public key certificate ObJECEScccvieiirire e 7779
10.6.2 X.509 attribute certificate ODJECES.......civvvii i 7880
10.7 N0 =N =0 1= PP .
10.8 FUBLIC KEY OBJIECT S, ittiitttttitetteettietteesttestesuessttseneesnetsnsesnessarrsneessstnsesnsesessneesnerrnnes T
10.8.1 RSA PUDIIC KEY OBJECES.....uiciicecec et s e 8385
10.8.2 9.6.2. DSA PUDIIC KEY ODJECES ...t 8486
10.8.3 ECDSA PUDIIC KEY ODJECESccueeueeieieiie sttt s 8587
10.8.4 Diffie-Hellman public Key ODJECES.......ocvciiicieece s 8587
10.8.5 KEA PUDIIC KEY ODJECESecuieeeiee sttt sttt e re e sn e e 8688
10.9 L A A B = e 0= =l 1P e
10.9.1 RSAPrivVatE KEY ODJECES......ccuveeeiise sttt st r e e e r et e 9092
10.9.2 DSAPrivate KEY ODJECESccueeieiese e re ettt sttt re e e e e sre e e 9294
10.9.3 ECDSAPrivate KeY ODJECES....c..ooiiiiiice et 9395
10.9.4 Diffie-Hellman private Ky ODJECESccvieeieiciese s sne 9496
10.9.5 KEAPrivate Key ODJECES......cviiiece st 9597
10.10 SCRET KEY OBJECT S iuuituiitutttnettntetneeteetaestieetaestaestiesneestssneesetsneesnestarrsneetaesraeesneetaeees e
10.10.1 Generic SECret KEY ODJECES......uoiuiiieecee e s 98100
10.10.2 RC2 SCret KBY ODJECES ...uveiviiecic sttt nnn 98100
10.10.3 RCA SECret KBY ODJECES ...cuveiviiecie sttt 99101
10.10.4 RCH SECret KBY ODJECES ...cuviiieie e s nne s 100102
10.10.5 DESSECIet KEY ObJECLScoiveiiie it seese ettt enaena e eesne s 100102
10.10.6 DES2 SECret KEY ODJECESc.viiiiie ittt st na e e sne s 101103
10.10.7 DES3 SECret KEY ODJECESc.viiiiie ettt st sne 102104
10.10.8 CAST SECTEt KEY ODJECEScviiviieicetececeeee ettt e e a e e e sne s 103105
10.10.9 CAST3 SeCret KEY ODJECESviiviieie et 103105
10.10.10 CAST128 (CAST5) SeCret KeY ObJECESveveveriereeicie et 104106
10.10.11 IDEA SECret KEY ODJECESoviieie e st sne 105107
10.10.12 CDMF SeCret KeY ODJECESviiviiiiiicieseceeese sttt sne 105107
10.10.13 SKIPJACK SECTet KEY ObJECES. .. .oveuiriereeeeie ettt 106168
10.10.14 BATON SECIet KEY ODJECLS....ccuiiviieeeieeecieseestese st e e te et st e e e e saesae e sne s 108109
10.10.15 JUNIPER SECTet KEY ObJECES.....cuiivieeierierieie ettt ettt st 109110
FUNGCTIONS ...ttt et e st e et e e sbeeeabe e e aseeeabeesseeenbeesnseesnbeesnneennns 111332
11.1 FUNCTION RETURN VALUESceteetiitttttteeeeititeeeeeesssttseeeeessstseeaeessssssanseesssnsssesaesssnssnnes el 1]
11.1.1 Universal Cryptoki function return VAIUES...........cooeiiiieiinineiereeesesee e 112313

6466

7274
274

7476
7577
7678

8082
8284

8789

9698

2113

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD iv

11.1.2 Cryptoki function return values for functionsthat use a session handle....................... 113114

11.1.3 Cryptoki function return values for functionsthat use atoken...........cccooeverrvrenienne 114115

11.1.4 Special return value for application-supplied callbacks ... 114115

11.1.5 Special return values for mutex-handling fUNCLIONS.............cceviiieiienene e 115116

11.1.6 All other Cryptoki function return ValUESccoevveiriiniciriereee s 115116

11.1.7 Moreon relative priorities of Cryptoki @TOrS.......ooeirerirereiereseeee e 122123

11.1.8 Error COAe “QOICNAS"ttt e e e e e e e e 123124
11.2 CONVENTIONS FOR FUNCTIONS RETURNING OUTPUT IN A VARIABLE-LENGTH BUFFER 123124
11.3 DISCLAIMER CONCERNING SAMPLE CODEceiiiiiiiitiiieieeeeeeiateeeeeeesessintsseeesesessssssssessssessnnnes 124125
114 GENERAL-PURPOSE FUNCTIONSecieittiieiittieeeateeeeeiareeesataeeeesareeeeesssesssassesasassesessssseessasseeenn 124125

¢ (O L] (=112 PO 124125

¢ C U FINALIZE ...t — 126127

¢ C GELINO e e e ee e L 28

¢ C GEtFUNCHONLISE ... e e e e e e e eaeees ...8129 12
115 SLOT AND TOKEN MANAGEMENT FUNCTIONS.cciiuuiieeiitiieeeeireeeeetreeeeetreeeeesseeeseaseeessraeeeenns 128129

¢ (O CT=1 5] (o] 1) SO UUUPPPPPPRRIN 128129

¢ C _GetSIOtINTO ... e eeea e LD

¢ (OF =1 o) =1 1 L) (o TP 131132.

¢ C WaItFOIrSIOEVENL ...t ... 133,132

¢ C_GetMeChaniSMLISTuciiiiiei i ee e e, 13313

¢ C_GetMechanisSmINfOcciiiii e e, 13513

¢ O o114 o) =] o PR PPPUPPPRRRR . L= ¥ = o

¢ (O Va1 1\ P PSUOTPRRN 137138

¢ (O T= 1 | I UURP PP 138139
11.6 SESSION MANAGEMENT FUNCTIONS.ciiiiitiieeeetieeeeitteeeeetteeeesareeeeesseeessseeeeanresesssssessasseeens 140141

¢ O @] 1= 1S =TT (o] o SRR 140141..

¢ € ClOSESESSION ...ttt et e e e e e e e e e et e e e e e e e e e eeeeaetr s 141142..

¢ C _CIOSEAIISESSIONS ...ttt e e e e e e e seennneeen e 243, 14

¢ C_GetSESSIONINTO ..uuiiii e A33AAL L

¢ (O €12 (@] 1] = 1110 g 1S] = L= PP U T RRRPRP=45.. 1441

¢ C_SetOPeratioNSIALEcciii it a e e e e e e246.. 145

¢ [1 o 1o TP PUPPUUPPPPPNY v & =" . |

¢ O Moo o 11 | OO UTTTTR PSRRI 149150
11.7 OBJECT MANAGEMENT FUNCTIONS.otiiiiuiieeeeteeeeeitteeeeetteeeesareeeeesseeessseeesanreeesesseessasseeean 150151

¢ C_CreatEODJECLt 150151,

C_COPYODJECE ...ttt e e 152153.

L S O B =T 1 (07 @ o] 1= Tox PP PPPPPPPPPOPPPIRY o 72 < = =5 i |

¢ (O €12 (@] o] [=Tox 5] 7.2 TP UPPPUPRPR - & .=

¢ C_GEetAHIDULEVAIUE257.156

¢ C_SetAtrNDULEVAIUE 3R, 15

¢ O =1 0Te (@] o] =1 £=] 1 TP ..591601

¢ (O 100 (@] o= o] £ PPPPPPPRPRPRRRY o1 < =X |

¢ C_FINdODJECISFINGLccoeiiiiiiei e e e e e e e kL 160
11.8 ENCRYPTION FUNCTIONScciiittiieeteeeeeeinteeeeeeesessastaeeeeaesesssntasesesssassnsanesesssesssnsssseesesessnnres 161162

L S O =11 (o1 Y/ o1 4 [o1 S PP O PP PPTTPPPPPP 161162

C_ENCIYPIUPAALE ...eeeeeeeeeeee et ...0164.16

C_ENCIYPIFINGL ... 164165
11.9 DECRYPTION FUNCTIONS.....ciiiitttiieieeeeeeintteeeeeesessustaeeeeassesssntsseeasssesasnsaneeesssesssnsssssessseansnnes 166167

L S O B L= Tot oY/ o1 T PP P PP PP PP 166167

4 O D =Tox oY/ o SO PPPPPPPPPPPPPPPPPINN X o 2 = -t

Copyright © 1994-1999 RSA Laboratories.

C DECIYPIUPGALE.eeceeeteseeieete ettt b et b e et b e nbennene 168169
CDECIYPLFINGL ...t 168169
11.10 MESSAGE DIGESTING FUNCTIONS.....cutuiitteiiieettteeeetee et eeetaeeseteeetnaeestneessaaeeetnaasannaees 270171
CDIGESHINIT..c.eeeceeecet e bbb e r e 170172
¢ (O BT = ST 171172
C DiIgESIUPUALEottt bbb 172173
G DIGESIKEY ...t b e bt 172373
¢ (O BT = i = ST 173174
11.11 SGNING AND MACING FUNCTIONS.uuiitiieitieeeeteeeetee et e e eateeeeteeest e esaaeeeannaessneeeannnas veene e 274175
¢ (O T 1o SR 174175
¢ LGRS T o OSSR 175376
L S O To 06« o = L= USSP U TSR PTOTURPRPORON 176177
CSIONFINGL ..ot b bbb nr e ere e 177178
¢ (O T[] L= w0 = o o SR 178179
¢ (O S To[g1 L= w0 = SR 179180
11.12 FINCTIONSFOR VERIFYING SIGNATURESAND MACS.ot180181
CVEMTYINIT oottt b e e b e r e 180181
¢ O 1Y PURRRIN 181182
CVETYUPLALE. ...ttt b e e be e 182183
CVEMTYFING .ot re e 182183
¢ C_VerifyRECOVENTNIT ...ttt st 183184
¢ C VEIITYRECOVES ...ttt et ettt et e bt sre st e sneeneeneens 184185
11.13 DJAL-FUNCTION CRYPTOGRAPHIC FUNCTIONSctuiiiteiitieeeiteeetieeeeteeeaneeeenneeesneeennnns185186
¢ C_DigestENCIyptUPAEALe.......c.coeiieiirieieeerieeetesieeie ettt ene 186187
¢ C_DeCryptDIgeStUPALE.coviieeuieterieieete ettt b e sr e e s sre s 188189
C_SONENCIYPIUPGALE.ccviieeeeterieeete ettt bbb 192193
¢ C DeCryptVerifylUPAALecceverieeiriiieiete ettt er e s s ere s 194195
11.14 KEY MANAGEMENT FUNCTIONS.titiiieeit et ee et eete et eeaae et e et e es e et e ean e et eetneennastnaennns 298199
¢ (O €1 01 -1 = Y ST U TP PR TSROSO 198199
¢ C_GENErateKEYPAITeoeeeeiesiese ettt sttt e et e e e e 199200
4 C WWFPKEY ...t e r e e e 201202
4 C UNWEAPKEY ...ttt e r e e r e ne s 203204
¢ (O B = 1 =Y ST 205206
11.15 FRANDOM NUMBER GENERATION FUNCTIONS ...ceuiiiiiiieeie et eete et eeneete e et eeneeteeenasnannnnsm207208
¢ LGRS = o[-l (o3 o ORI 207208
¢ (O €1 0= =10 =0T (o o H PSSR 208209
11.16 RARALLEL FUNCTION MANAGEMENT FUNCTIONS......cituuieiiieeiiiieeeieeeieeeeieeeea e e et eeeanns208209
¢ C _GEIFUNCHONSIALUS........ecvieiiceiectiecteesie et et ste e sre et e eatesaaestaesbeesbeeresnsesaeesaeesaeenseenns 209210
¢ (O @r=T o Tor= | =N g ox o] o FHS OSSPSR 209210
11.17 QALLBACK FUNCTIONS ... cttueiiieeiteeeiteeeteeeeteeesiesetnaessteessnnesssneesssneessnsesssneessnneeesnseennm200210
11.17.1 SUrTeNder CAlIDACKScuviiiieece ettt s ereenars 209210
11.17.2 Vendor-defined CallDACKS...........ccoveivieiiee et ee e sareeeaee e 210211
12, MECHANISMS...... ettt et st e e be e s e be e e eae e e s beeeaeeesbaeeneeesreeenneeenes 210212
12.1 RS AMECHANISMS ..ottt e e et e et e e e e et e et e e et s st e s eanssansesnesaneesneesnssannes 214216
12.1.1 PKCS#1 RSAKEY PaIl GENEIALION.....ccueiieiueeiereeeeieeseeseeseestesseereseesaessessessessessessessseseens 214216
12.1.2 PKCSHLRSA. ...ttt s e s te e st e s ae e s be e sbeesabeesneesnteeeseesteesnseesans 215217
12.1.3 ISOMEC 9796 RSA......cocteectieteete ettt sttt ettt ettt eebe et e e be et e sabesaeesaeesreesaeenneenneenns 216218
12.1.4 X509 (FAW) RSA ..ottt e ettt e st aestesne e e e eeseentesnenrens 217219
12.1.5 PKCS#1 RSA signature with MD2, MD5, OF SHA-Lccccoe v 219221
12.2 DS AMECHANISMS ...t ettt ettt e et e et e e e e e et e e e et e e et e e et e e eat e e et e eaaeeean e eenneeannaarannns 219221

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD Vi

12.2.1 DSAKEY PAIN GENEIALION.ceiuirieiiriirieeeierte sttt sb et sb e s 219221
12.2.2 DSAWIThOUL NASNINGcoiviieiiiiiieieeie ettt s r et 220222
12.2.3 DSAWITN SHAL ..ottt ettt ete e et e e ree et e s be e e bee e saeeesbeeesseeebeeesreeenrens 221223
1224 FORTEZZA tIMESLAIM...ccuiiuieiiie ettt steeieeee et e e sttt sae s seeseeseestesbesaessesneeneeneenseses 221223

12.3 ABOUT ECD S A ..o et e e e et e et e e eaa e e 222224

12.4 ECDSAMECHANISMSiiiiieiie et e e et e e e et e et e e et e e et e s aa e e et e e snn e ssnneensnseene e 222224
12.4.1 ECDSAKEY PAIl GENEFLION......ciuiiriirieirierieeeie sttt ettt 222224
12.4.2 ECDSAWIthOUt haShiNgccoiiiieieiseceee et s 223225
12.4.3 ECDSAWITN SHA L ..ottt ettt sre et e et e e sare e sbee e saneesree e saneenanas 224226

12.5 DIFFIE-HELLMAN MECHANISMS. ..t ittt e e et e et e et e e e ee et e e s e et e e e e e e esneeens 224226
1251 PKCS#3 Diffie-Hellman key pair generationcccoeveenennienenne e 224226
1252 PKCS#3 Diffie-Hellman key derivation...........ccccoeieienenieierenese e 225227

12.6 KEAMECHANISM PARAMETERS.uuituiitiitieete e et te et e et e et e et e ea e et e eaeeen e et eenaenaennnn 226228
¢ CK_KEA DERIVE PARAMS, CK_KEA DERIVE PARAMS PTR.....cccccccvviiiiiieiieennns 226228

12.7 K E A MECHANISM S, ..t ettt et e et e et e et e et e e e et e e st e e e e e aa e s e e s eaneesnaesneesnaesnaeannas e 227229
12.7.1 KEAKEY PAIT GENEIALION.ceiuiriiieiiriiieiesteieie sttt sttt sbe e sbe e 227229
12.7.2 11.7.2. KEAKEY AENIVAtIONooeiieiiiteeeeee ettt s 227229

12.8 (ENERIC SECRET KEY MECHANISMS....cctuiiiiiieiiieeeiteeeeieeeeieeeieeeeneeevn e enieeeenn e ennn e ennnee e e 228230
12.8.1 Generic Secret KeY generation.........c..eeiiieeriirieirieie st 228230

12.9 WRAPPING/UNWRAPPING PRIVATE KEYS (RSA, DFFIE-HELLMAN, AND DSA).................... 228230

12,10 ABOUT R C ... it e e et et e et e e et e eeaaanas cee.32. 2302

12.11 RC2VMECHANISM PARAMETERS.ctuiiiteeiit e etitaee et e ettt e e et e e et ee et e eaaaestaaeeetnaessnnaees 230232
¢ CK_RC2 PARAMS, CK_RC2 PARAMS PTR...ccci ittt see et sae e saeenne s 230232
¢ CK_RC2 CBC _PARAMS, CK_RC2 CBC PARAMS PTR.....ccociiieirieetee e esivee e 231233
¢ CK_RC2 MAC GENERAL_PARAMS, CK_RC2 MAC GENERAL_PARAMS PTR...... 231233

12.12 RC2VECHANISMS. ...eiitieii et ee e e et e e e et e e e ee et e e et e e et e e et e eat e e st e eetnaassnneeeras 232234
12121 RC2KEY JENEIALION......ciuieeiireeiieiirteeeie sttt sttt b et sb et sb e s 232234
12.12.2 RC2-ECBi.......ooi ettt ettt e e ettt e e et e e et e e e eaate e e sbeeeeenteeesenneeas 232234
12.12.3 RC2-CB ...ttt e e et e e e ettt e e et e e et e e e e eaaaeeesbeeeeeanteeesnneeas 233235
12.12.4 RC2-CBC With PKCS Padding........cceeeeeeieriene e 234236
12.12.5 General-1ength RC2-MAC ..o e 235237
12.12.6 RC2-MAC ... et et e ettt e e et e e e et e e e e ta e e e eaateeesebteeeeanteeeeenneeas 236238

12.13 RCAMECHANISMS. ... eitiieiieee et e e et e e e et e e e e et e e e et e et e e et e e et e e st e eetneersnneerns 236238
12.13.1 RCAKEY JENEIALION......ciuieeiirieieierieieiesie ettt sttt b et sb e et b 236238
12.13.2 RCA ...ttt e e et e e e et e e e e e e et e e e e e ar e e e abreaeeaateeeennnees 237239

12,14 PBOUT RC ... ettt e et e e et e e et e eaaaas .39, 2372

12.15 RCHVECHANISM PARAMETERS.cuuiittiieitteetiteeett e ettt e eataee et ee et e esnee st eeetnaersnnaaees 237239
¢ CK_RC5 PARAMS, CK_RC5 PARAMS PTR...cciiiiiiiiie ettt see et sae et sae s 237239
¢ CK_RC5 CBC _PARAMS, CK_RC5 CBC PARAMS PTR.....ccov e esee e 238240
¢ CK_RC5 MAC GENERAL_PARAMS, CK_RC5 MAC GENERAL_PARAMS PTR...... 238240

12.16 RCOMECHANISMS.iiitiieiieee it e ettt e e e et e e e e et e e e et e et e e et e e eaa e e et eeetaeeesaneerns 239241
12.16.1 RCS5 KEY JENEIALION......couieeuirieieiirteeeitste ettt sttt b e 239241
12.16.2 RCB-ECBi..... . oottt et e e ettt e et e e et e e e e eaaae e e sbeeeeeenteeesnneeas 239241
12.16.3 RCB-CB ...t et e et e e et e e e bt e e et e e e e easaeeesbeeeeenteeesnneeas 240242
12.16.4 RC5-CBC With PKCSPAdiNg.......ccveoeeverieeeiiriiieierieieieseeesiesieeeseseeeese s 241243
12.16.5 General-1ength RC5-MAC ... e 242244
12.16.6 RCE-MAC ... ettt e et e e e e abe e e e e ta e e e enateeesetteeeeeateeeeenneeas 242244

12.17 GENERAL BLOCK CIPHER MECHANISM PARAMETERScittuiiiitieiiieeeiteeeeteeeteeeeteeennnnas243245
¢ CK_MAC_GENERAL_PARAMS, CK_MAC_GENERAL_PARAMS PTR.....c.cccccvvvunennne. 243245

12.18 GENERAL BLOCK CIPHER MECHANISMScuuiiitiiiii et eeetee e e e e e e e et e e e e s e eeaanns243245
12.18.1 General block cipher Key generationccoeoerineenineienese e 243245
12.18.2 General block CIPNEr ECB ..o 244246
12.18.3 General block CIPNEr CBC.......ci i 245247
12.18.4 General block cipher CBC with PKCSpaddingcoccoeerereneenenieiesese e 245247

Copyright © 1994-1999 RSA Laboratories.

12.185 General-length general block Cipher MACcoi i 246248
12.18.6 General block CIPNEr MAC ..o 247249
12.19 DDUBLE-LENGTH DESMECHANISMSuuiiiiiiiiieeiie e ee ettt e e et e e et e e e et e e eaans e 247
12.19.1 Double-length DESKEY generation.........cccoereeririeieriinieieniesie s 247249
12.20 SKIPJACKMECHANISM PARAMETERScuuiitiieiiteeitieeeitee et ee et e et e e et eeeanaessaeeernnns 248
¢ CK_XIPJACK PRIVATE WRAP_PARAMS
CK_SKIPJACK PRIVATE WRAP_PARAMS PTR......otiiiieiieeeie e steeste st e e steesae e sreasnee e 248250
¢ CK_SXKIPJACK RELAYX PARAMS, CK_SKIPJACK_RELAYX PARAMS PTR........... 249251
12.21 SKIPJACKMECHANISMSittieiiieeii e ee e e e et e e et e et e e e et e e e et e e s teeeateeean e eataeesnnns 2D
12.21.1 SKIPJACK KEY gENEIatioNcceeuereiieiiriiieeeste ettt 250252
12.21.2 SKIPJACK-ECBBA.........ooieeeeee ettt ettt ettt e et e aae e e e ba e e e e abe e e ennns 250252
12.21.3 SKIPJACK-CBECBA...... .ottt ettt e ettt e et e et e e e s ebae e e e eatee e e eaneeaesbaeaeennes 251253
12.21.4 SKIPJACK-OFBBA....... .ottt e e e ettt e e e st e e e e sate e e seaseeaesnbaeeeennes 251253
12.21.5 SKIPJACK-CIBBA.........oei ettt ettt ettt e e et eaae e e e s be e e e eabe e e enns 252254
12.21.6 SKIPJACK-CIBB2......ceee ettt ettt e e et e aae e e e s bee e e e abe e e ennns 252254
12.21.7 SKIPJACK-CFBILG...... ..ttt ettt ettt ettt e et e e aae e e e be e e e e abe e e ennns 253255
12.21.8 SKIPJACK-CBS ...ttt ettt e ettt e st e e e sate e e e eaneeaesbaeaeennns 253255
12.21.9 SKIPJACK-WRAP ...ttt ettt e ettt e ettt e ettt e e e st e e e e eeateeeseaneeaesnbaeaeennes 254256
12.21.10 SKIPJACK-PRIVATE-WRAP ...ttt 254256
122111 SKIPJACK-RELAYX ...ttt ettt ettt e et e e e et e e e eate e e e entee e e ennes 254256
12.22 BATONMECHANISMS ...uuiitiieiit ettt e et e et e et e e et e e e te e e et e e et e s st e eeateeeanesssneessnsesen T2 D)
12.22.1 BATON KEY GENEFALION ...ttt e 255257
12.22.2 BATON-ECBIL28 ...ttt ettt e e ebe e e e abe e e eearae e e ennes 255257
12.22.3 BATON-ECBOB ...ttt ettt e et e e et e e e abe e e e nnbe e e ennns 255257
12.22.4 BATON-CBCL28....... .ottt ettt st e e ettt e e e ae e e s sba e e e e abeeeeensaeaeennns 256258
12.22.5 BATON-COUNTER........coo ettt ettt e e etae e e et e e e eare e e e enbee e e enneeas 256258
12.22.6 BATON-SHUFFLE ...ttt et e 257259
12.22.7 BATON WRAP ...ttt et e e et e e e e e e e e s ba e e e e enteeeenneeas 257259
12.23 JUNIPERVECHANISMSoui ittt e e et e e e e et e e et e et e e et eeean e esaeeeaans 2D
12.23.1 JUNIPERKEY gENEIatioNcc.eeeuiriiieiirieieicsie ettt 257259
12.23.2 JUNIPER-ECBI28..........ooii ettt ettt e eeatae e s eaeea e eareaeenns 258260
12.23.3 JUNIPER-CBCL28....... .ottt ettt e ettt e e e eave e e eeatae e e eneeeeenreeeenns 258260
12.23.4 JUNIPER-COUNTER........ooiiitii ettt ettt eree e et e e et e e nae e e e enbeeaean 259261
12.235 JUNIPER-SHUFFLEoooee ettt e e 259261
12.23.6 JUNIPERWRAP ...ttt ettt ettt e e st e e e et e e e e nnaea e sbaeaenns 260262
12.24 MD2MECHANISMS.uiitiieetie et etae et e et e et e e ettt e e et e e et ee et esaa e e et eeetnaessaaeestnaasannnaes e 20
12.24.1 IVID 2 et e e e e e et e e e et e e e e e e e e e e ba e e e eaaeeeaatreaeeaataeeeannnees 260262
12.24.2 General-1ength MD2-HMAC.........ooi ettt 260262
12.24.3 MD2-HIMAGC ...ttt e e et e e e e te e e e e atee e seabeeeeenteeeeenneeas 261263
12.24.4 MD2 KEY eI TVALTION.......iieieeieiieie ettt sttt st b e sre e e neeneens 261263
12.25 MDBSMECHANISMS.uiitiieet et e e e e e et e e ettt e et e e et e e et e e s et e e etaeeetnsessaneestaaasannnaes e 20
12.25.1 VIS ettt e e et e e et e e e ea—e e e e abaeaeeareeeaatreeeeaateeeeannnees 262264
12.25.2 General-1ength MDS-HMAC.........ooi et 262264
12.25.3 MDBS-HIMAGC ...t e et e et e e e e te e e e eatee e s eabeeesenteeeeenneeas 263265
12.25.4 MD5 KEY AErTVALTION.......iieieeieieie ettt st sre e nee e 263265
12.26 SHA-IMECHANISMS. .. .cuueiiiieeei ettt e et e et e et e e e et e e e et e e et e e e st eeeaaeeennaeesteaeansnss I—l
12.26.1 SH A - Lttt e et e e e e b e e e e e—e e e e abaeaeaaareeeeaareeaeataeaaaann 264266
12.26.2 General-length SHA-L-HMAGC ...t 264266
12.26.3 SHAL-HMAC ...ttt ettt e e e st e e et e e e s be e e e enbeeeennns 265267
12.26.4 SHA-L KEY eI TVALION ...ttt s neas 265267
12.27 FASTHASHVECHANISMS. ... ottt e et e e e e e et e et e e et e e eaa e e eaaaeeaan 1}
12.27.1 FASTHASH ...ttt et e et e e e e aare e e s ba e e e e eatee e eenneeas 266268
12.28 RASSWORD-BASED ENCRY PTION/AUTHENTICATION MECHANISM PARAMETERS................. . 266268
¢ CK_PBE_PARAMS, CK_PBE_PARAMS PTR......coi ittt 266268

P49

250

D252

5257

7259

0262

2264

4266

5268

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD viii

13.

12.29 PKCS #3ND PKCS #5STYLE PASSWORD-BASED ENCRYPTION MECHANISMS................ . 267269
12.29.1 MD2-PBE fOr DES CBC.......cccoieitieceie ittt ettt ere e st sreesabe s snneesare s 267269
12.29.2 MD5-PBE fOr DES CBC.......ccciviiitieceie ittt ettt ere e st sere e st ssre e st s snneesare s 268270
12.29.3 MD5-PBE fOr CAST-CBC......ccviiitieeeiecteectee st ere st eire e sate e sreessteesareesaressnneesnnes 268270
12.29.4 MD5-PBE fOr CAST3-CBC.......ciiitiiicieeeitie ettt ettt sareestee e seeestre e sareesbeeesnneesnne s 268270
12.29.5 MD5-PBE for CAST128-CBC (CAST5-CBC)ocueeeeierieniereeie et 268270
12.29.6 SHA-1-PBE for CAST128-CBC (CAST5-CBC)......ceooiriirierieeierienieseeeeesee e 269271

12.30 PKCS #1PASSWORD-BASED ENCRY PTION/AUTHENTICATION MECHANISMS..................... 269271
12.30.1 SHA-1-PBE fOr 128-Dit RCA.......ocoveeeeee ettt 270272
12.30.2 SHA-1-PBE fOr 40-Dit RCAove ittt st 271273
12.30.3 SHA-1-PBE for 3-key triple-DES-CBC........cccccoiirieirinieieeseeee st 271273
12.30.4 SHA-1-PBE for 2-key triple-DES-CBC........ccceoiirieieinieineseeee s e 272274
12.30.5 SHA-1-PBE for 128-hit RC2-CBC.........ccoieieiectieeceeectee ettt esee et srae e snneennnes 272274
12.30.6 SHA-1-PBE for 40-bit RC2-CBC.......ceieiiieceee ittt 272274
12.30.7 SHA-1-PBA fOr SHA-L-HMAC ...ttt ettt e 273275

12.31 SETMECHANISM PARAMETERS.ctuiiiteeiit e titee et e ettt e e e st e e et ee et e e s e e et eeetnaesannaees 273275
¢ CK_KEY WRAP_SET OAEP_PARAMS, CK_KEY WRAP_SET OAEP_PARAMS PTR

273275

12.32 SETMECHANISMS. ..euiitieiieee et e et e et e e e et e e e e et e e e et e et e e et e eet e e st e eetneaesnneerns e 274276
12.32.1 OAEP key wrapping fOr SET ..ot 274276

12.33 LYNKSMECHANISMS. ... ciiuiiiiieeeiiiee et eeetiee et e ettt eeete e et e e et e s st eeesaeeesnsessnnsessnnesssnseeencrr 2 (D2 T T
12.33.1 LYNKSKEY WIAPPING .vcueevereeneerereeeeresteeesesseessesseeesessessesessessesessesesessssesesssssesessenes 275277

12.34 SSLMECHANISM PARAMETERSctuiiitieiit e eetee et e et e e et e e et e e et e e e e e et eeetaaesannaees e 205277
¢ CK_SS.3 RANDOM _DATA ..ottt ettt ettt st ae e st e e b e snae e snreesnnee s 275277
¢ CK_SS.3 MASTER KEY DERIVE_PARAMS,

CK_SS.3 MASTER KEY DERIVE PARAMS PTR.....ciiiiieciieccie et see e 276278
¢ CK_SS.3 KEY MAT OUT; CK_SS.3 KEY MAT OUT PTR....ccccccievieeeieecee e 276278
¢ CK_SS.3 KEY MAT PARAMS, CK_S9.3 KEY MAT PARAMS PTR......ccccevvveennenn. 277279

12.35 SSIMECHANISMS ...uuiiitiieiie et e et et e e e et e et e e et e e e et e et e e et e eaa e e st e eetneesenneenns 278280
12.35.1 Pre_master Key generationcoeoeeririeereneeseseeesies e e 278280
12.35.2 Master KeY deriVation...........cocii it s 278280
12.35.3 Key and MAC deriVation..........coeieeeeiieienesiese st 280282
12.35.4 MD5 MACING IN S 3.0, cceeeiierie sttt sttt e e e 281283
12.35.5 SHA-1L MACING IN ST 3.0 .ttt st seen 281283

12.36 RARAMETERS FOR MISCELLANEOUS SIMPLE KEY DERIVATION MECHANISMS 282284
¢ CK_KEY_DERIVATION_STRING _DATA; CK_KEY _DERIVATION_STRING DATA PTR

282284
¢ CK_EXTRACT _PARAMS, CK_EXTRACT _PARAMS PTR....cccoi it 283285

12.37 MSCELLANEOUS SIMPLE KEY DERIVATION MECHANISMS.....covtniiiiieeiiieeeiieeeeeeeeeieeeeaanns ... 283285
12.37.1 Concatenation of a base key and another Key ..o 283285
12.37.2 Concatenation of abase key and dataccooeeeeieniiiieie e 284286
12.37.3 Concatenation of data and abase Key ... 285287
12.37.4 XORING Of @ Key and datal........cceuerririeiriiieiriisieeseee e 286288
12.37.5 Extraction of one key from another Key ... 287289

12.38 RIPE-MD 128/ECHANISMS......ccctuiiiiiieeiiieeeeee e eeet et e et e et eereesar e enneessnneeenn e 289291
12.38.1 RIPE-IMD 128 ...ttt ettt et e e aa e e e sbae e e et e e e eennbeeeennns 289291
12.38.2 General-length RIPE-MD 128-HMAC..........ccoceiiiiiieiereeie et 289291
12.38.3 RIPE-MD 128-HMACttt et e earee e et e e are e e e nneas 290292

12.39 RIPE-MD 16MMECHANISMS......ccctuiiiiiieeeiiieeeieee et eeei e et e e eteeeeieeerneesaneesnnessnneeesnneeeen 290292
12.39.1 RIPE-IMD 160oooiiiitiieeeiiie ettt ettt e e et e e e ene e e e sbae e e e eabeeeeennreeeennns 290292
12.39.2 General-length RIPE-MD 160-HMAC..........cccoiiiiiiieireee e 290292
12.39.3 RIPE-MD 160-HMAC ettt et e et e et e nneas 291293
CRYPTOKI TIPSAND REMINDERS........oooiiii ettt sttt 291294

Copyright © 1994-1999 RSA Laboratories.

Page 1X

13.1 CPERATIONS, SESSIONS, AND THREADSiitueitieeitieeeeteeetteeeetaeeeteeestaeeeteesstaeaesnaees . 291P294
13.2 MULTIPLE APPLICATION ACCESS BEHAVIORcvuiitieii e et e et e e e e e e eansv292294
13.3 CBJIECTS, ATTRIBUTES, AND TEMPLATESuciittieiiieeit e etieeeete e et e e et e eeteeeeaeesaaeeeannns . 292295
13.4 SGNING WITH RECOVERY ...uuuiiitieiiieeete e et e e et e e ete e e et e e eat e e st e e s et e eeateeeanaeestnaaesnnees e 292295
APPENDIX A: TOKEN PROFILES ..ottt ettt ettt e stae st s srae et e s raeenee e 295297
APPENDIX B: COMPARISON OF CRYPTOKI AND OTHER APIS ..., 297299

List of Figures

FIGURE 1, GENERAL CRYPTOKI IMODEL ..ccccoiiiitttteiieiee e ceitreeeee e essivsrree e e e s sassnnees 1445
FIGURE 2, OBJIECT HIERARCHY ...ttitiiiiiee e citrte s s s e s sbbae e e s e s s s saasbe s e e e s s s s sesnabaseeesaseeas 16
FIGURE 3, READ-ONLY SESSION STATES......ciitiittteiriieeeisisitreeriesssssssssssssseessssssssssssssssees 2021
FIGURE 4, READ/WRITE SESSION STATES......ccctttiiiiiittiieeiiieressssssesessssssesesssssesesssssssessanns 2122
FIGURE 5, OBJECT ATTRIBUTE HIERARCHYutttiiiiiiee e eetreeeie e e e ssrbrree e e e s s sassreees 6870
FIGURE 6, HARDWARE FEATURE OBJECT ATTRIBUTE HIERARCHYvvvvieiiiee e, 7375
FIGURE 7, CERTIFICATE OBJECT ATTRIBUTE HIERARCHY ...vttviiiiiiiiiiiiirieeeee e eevveeeeas 7678
FIGURE 8, KEY ATTRIBUTE DETAIL ..uuttiiiiieiiiiicitieeieeie e s seiareeree s s s s s s s sassssseeses s s sesnsssenes 8082

List of Tables

L =TI =) 1Y 1 =0 I 1011
L =TI S == =) d I T 1011
TABLE 3, CHARACTER SET ..ot icctttteiii e e e sttt e e e e s s s s s sab s s e e et e s s s s ssabbbeeesa s s s s s snbbanenssaseeas 1243
TABLE 4, READ-ONLY SESSION STATES.....ccotteriieeiiiisistiereieiessssssssssssresessssssssssssssssesses 2021
TABLE 5, READ/WRITE SESSION STATES......uttiiiiiiiiieeiiiieeeessiserssssssesssssssseessssssessssssssees 2122
TABLE 6, ACCESSTO DIFFERENT TYPES OBJECTSBY DIFFERENT TYPES OF SESSIONS ... 2223
TABLE 7, SESSION EVENTS ...t ctiteiiee et trire et be e e e s s s s s abbae e e s s e s s e e ssabaseeeeesssssnnnes 23
TABLE 8, SUMMARY OF CRYPTOKI FUNCTIONS ..ottt savvae e e 29
TABLE 9, SLOT INFORMATION FLAGS ..ottt aaree e e sabbaneee s e 4143
TABLE 10, TOKEN INFORMATION FLAGS ... ettt ittt ssrree e savbaneee e 4446
TABLE 11, SESSION INFORMATION FLAGSutttiiiieii ittt vvane e 4850
TABLE 12, MECHANISM INFORMATION FLAGS .cciiiiiii ittt ettt vvane e 5961
TABLE 13, C_INITIALIZE PARAMETER FLAGS.......ttiiiiieciiee et 6769
TABLE 14, COMMON OBJIECT ATTRIBUTES....uttttiieeiiiiiiistrerereiessssssssssssreiessssssssssssssesesses 1274
TABLE 15, HARDWARE FEATURE COMMON ATTRIBUTES...cciiiiiiiiiiriereiee e e sesssvsneeeees e 7375
TABLE 16, CLOCK OBJECT ATTRIBUTES.uuttttiiieeiiiiiittiereieiesssssssssseresesssssssssssssssssessnns 7375
TABLE 17, MONOTONIC COUNTER ATTRIBUTES.......oiiecttteeeieie e e siirrereee s s e s s ssssaseeesas s 7476
TABLE 18, COMMON STORAGE OBJECT ATTRIBUTESutttiiiiieeiiiiiiiriereie s e e e sesssssseeeses e 7476
TABLE 19, DATA OBJIECT ATTRIBUTES......ccctttteeiieeiisissttiseeieiessssssssssssrssesssssssssssssssssessns 15
TABLE 20, COMMON CERTIFICATE OBJECT ATTRIBUTES...ccttiiiiiiiirieeeiee e sssvveneeeee e 7779
TABLE 21, X.509 CERTIFICATE OBJECT ATTRIBUTES.....utttiiiieeiiiiiiiriereieeeesssssssssereseseens 7779
TABLE 22, X.509 ATTRIBUTE CERTIFICATE OBJECT ATTRIBUTES....ttttiieeeiiiinrreeeeeeeeen, 7880
TABLE 23, COMMON FOOTNOTES FOR KEY ATTRIBUTE TABLESuvtiiriieeeeeieirreeeeeeee e, 8082
TABLE 24, COMMON KEY ATTRIBUTES......cccttteriieeiiiisistierereiesssssssssssesssesssssssssssssssesessns 8183
TABLE 25, COMMON PUBLIC KEY ATTRIBUTES.......ciiiiittttieie e e e siirrereee s s s sesssvaneeese s 8284

TABLE 26, MAPPING OF X.509 KEY USAGE FLAGS TO CRYPTOKI| ATTRIBUTES FOR PUBLIC

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD X

TABLE 27, RSA PUBLIC KEY OBJIECT ATTRIBUTES......cuttiiiiiieeiiiiiisriereie s e e s sssssssseeesesenns 8385
TABLE 28, DSA PUBLIC KEY OBJECT ATTRIBUTEScuuttiiiiiieeiisiiiriereie e s e s ssssssaseeeses s 8486
TABLE 29, ECDSA PUBLIC KEY OBJECT ATTRIBUTES ..vvviiiiieiiiiiiirieeeiee e sesssvsseeesee e 8587
TABLE 30, DIFFIE-HELLMAN PUBLIC KEY OBJECT ATTRIBUTESuvviiiiieeeeeienvreeeeeeeeen, 8687
TABLE 31, KEA PUBLIC KEY OBJECT ATTRIBUTESuuttiiiiiieeiieiiirrereiessssssssssssereseseens 8788
TABLE 32, COMMON PRIVATE KEY ATTRIBUTESooocttteiiie e e siirrerere s s e snssaseeesa e 8890
TABLE 33, MAPPING OF X.509 KEY USAGE FLAGS TO CRYPTOKI ATTRIBUTES FOR PRIVATE

K EY S tttttitte ettt ettt ettt e e e e e s e et e et e e e e e e sa s e aaeeeeeeeaeeesaantteeeeeeaeeaaaaanareeeeaeaeeeaaanrrrreeeeaeeaaanns 9092
TABLE 34, RSA PRIVATE KEY OBJIECT ATTRIBUTES.....utttiiiiieeiiiiiiiriereie e e s s sssssssseeeseseens 9092
TABLE 35, DSA PRIVATE KEY OBJECT ATTRIBUTESutttiiiiieeiiiiiiriereie e s e sssssvsseeeses e 9294
TABLE 36, ECDSA PRIVATE KEY OBJECT ATTRIBUTES ..eeeiiieiiiiiirieeeie e e senvveeeee e 9395
TABLE 37, DIFFIE-HELLMAN PRIVATE KEY OBJECT ATTRIBUTES ...vvviiiieeeiiieivveeeeeeeeen, 9496
TABLE 38, KEA PRIVATE KEY OBJECT ATTRIBUTESutttiiiiieeiieiiisriereie e e e s sssssvsseeeseseens 9597
TABLE 39, COMMON SECRET KEY ATTRIBUTES......iitsettteeeriiee e e siirrereee s s e s sssvaneeeses e 9799
TABLE 40, GENERIC SECRET KEY OBJECT ATTRIBUTES . ..ceiiiiiiiieitrreeeie e e e essssvseereees s 98100
TABLE 41, RC2 SECRET KEY OBJECT ATTRIBUTES.....uutttiiiieeiiiiisrreeeieeesessssssssereseseens 99101
TABLE 42, RC4 SECRET KEY OBUJIECT ... iictteiiii e eestrrteer e s s s ssssrbeesse s s s s s sssbassessasseas 99101
TABLE 43, RC4 SECRET KEY OBUJIECT ..ottt seiitree e e asbase e e e e s e s essvbneeeas 100102
TABLE 44, DES SECRET KEY OBUIECT ..ottt siitreeeee s s s esssssaseee s e s s s sssssbnnees 101103
TABLE 45, DES2 SECRET KEY OBJECT ATTRIBUTEScuvttiiiieieiiesrrireeeeee e e e sssssveeeeas 101103
TABLE 46, DES3 SECRET KEY OBJECT ATTRIBUTEScuttiiiiieieiiissirireeeeee e e e sesssseeeeas 102104
TABLE 47, CAST SECRET KEY OBJECT ATTRIBUTES.....uutttiiieieiiiiirsrrereeeeeessesssseeees 103105
TABLE 48, CAST3 SECRET KEY OBJECT ATTRIBUTES....uvttiiieieiiisirireeeeee e e e ssssvseeeens 103105
TABLE 49, CAST128 (CAST5) SECRET KEY OBJECT ATTRIBUTES.....cocveveiereenienens 104106
TABLE 50, IDEA SECRET KEY OBJIECT ... iicttteiiiie e sitrer e essasbase e e e e s sssvvaeees 105107
TABLE 51, CDMF SECRET KEY OBUIECTuttttiiiiieeiissiiirreeiee s s s s essssssseesse s e s sssssvssneas 106108
TABLE 52, SKIPJACK SECRET KEY OBJECT ..tvtiiiiiiiiiiiirreeiie e e esssirseee e e e e sssssvseeeas 106108
TABLE 53, BATON SECRET KEY OBJIECT .. .uuttiiiiiieeiiiiiiirreriie s s s s sssssssseeseesesssssssssssees 108109
TABLE 54, JUNIPER SECRET KEY OBJECT ...vtttiiiiiiiiiiiirieeiie e e essssrseee e e e ssssvseeeas 109111
TABLE 55, MECHANISMS VS, FUNCTIONS. ...t 2112143
TABLE 56, PKCS#1 RSA: KEY AND DATA LENGTH ...cvvtiiiiieiii e eivveeeeas 216218
TABLE 57, ISO/IEC 9796 RSA: KEY AND DATA LENGTH ...uvvieiiiiiieee e eiveeee e 2172149
TABLE 58, X.509 (RAW) RSA: KEY AND DATA LENGTHcoiiiiiriirieeeieeesie e 218220
TABLE 59, PKCS#1 RSA SIGNATURESWITH MD2, MD5, orR SHA-1: KEY AND DATA

LENGTH «.iteiii et e e et e e e e e e e s e aae e e e e e e e e e easnabeeeeeaaaeeesasnseeneeeaaessnnanes 219221
TABLE 60, DSA: KEY AND DATA LENGTH ..uuttiiiiiiiiiie ittt eesrvreeee e seassveeeeas 220222
TABLE 61, DSA WITH SHA-1: KEY AND DATA LENGTH wevvviiiiiiiiiciiiieeeee e eeivveeee, 221223
TABLE 62, FORTEZZA TIMESTAMP: KEY AND DATA LENGTH ..vvvvviiieeeee e, 221223
TABLE 63, ECDSA: KEY AND DATA LENGTH weveiiiiiiiiiitieeeie e avvaeeeas 223225
TABLE 64, ECDSA WITH SHA-1: KEY AND DATA LENGTH.....coovvitvieeeeee e, 224226
TABLE 65, RC2-ECB: KEY AND DATA LENGTH.c..cciii ittt 233235
TABLE 66, RC2-CBC: KEY AND DATA LENGTH ..oeiiiiiiiee et 234236
TABLE 67, RC2-CBC wiTH PKCS PADDING: KEY AND DATA LENGTH.....cooevvvveeee. 235237
TABLE 68, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTH weeevveeeiiierrrieen, 235237
TABLE 69, RC2-MAC: KEY AND DATA LENGTH ..ccooi ittt vveeeeas 236238

Copyright © 1994-1999 RSA Laboratories.

TABLE 70, RC4: KEY AND DATA LENGTH .uuutttiiiiieii e erieeiie e e svreeee e e sessvveeeeas 237239
TABLE 71, RC5-ECB: KEY AND DATA LENGTH.c..ccoii ittt 240242
TABLE 72, RC5-CBC: KEY AND DATA LENGTH ..ocooiviitieeiee e avveeeeas 241243
TaABLE 73, RC5-CBC wiTH PKCS PADDING: KEY AND DATA LENGTH.....ooeeevvveeeee. 242244
TABLE 74, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTH weeevveeeviierrreenen, 242244
TABLE 75, RC5-MAC: KEY AND DATA LENGTH ..eeiiiiiiiee et 243245
TABLE 76, GENERAL BLOCK CIPHER ECB: KEY AND DATA LENGTH..ccvvveeiiiiiivveeee, 245247
TABLE 77, GENERAL BLOCK CIPHER CBC: KEY AND DATA LENGTH..cevveeeiiieinvveeen. 245247
TABLE 78, GENERAL BLocK CIPHER CBC wiTH PKCS PADDING: KEY AND DATA LENGTH246248
TABLE 79, GENERAL-LENGTH GENERAL BLock CIPHER MAC: KEY AND DATA LENGTH247249
TABLE 80, GENERAL BLock CIPHER MAC: KEY AND DATA LENGTH ..occceevienvvneee. 247249
TABLE 81, SKIPJACK-ECB64: DATA AND LENGTHcvvviiiiieiii et 251253
TABLE 82, SKIPJACK-CBC64: DATA AND LENGTH.....uvtiiiiieiiiiieeiieeeeeee e seivveeeeas 251253
TABLE 83, SKIPJACK-OFB64: DATA AND LENGTHcvvviiiiieiii i 252254
TABLE 84, SKIPJACK-CFB64: DATA AND LENGTH ...ecvvviiiiieiii e seivveeeeas 252254
TABLE 85, SKIPJACK-CFB32: DATA AND LENGTH ...evvviiiiieiie et sevveeeens 253255
TABLE 86, SKIPJACK-CFB16: DATA AND LENGTH ...uvvviiiiieiie et seivveeeeas 253255
TABLE 87, SKIPJACK-CFB8: DATA AND LENGTH ..cuvtiieiiiieeececreee et e eeiree e 254256
TABLE 88, BATON-ECB128: DATA AND LENGTH ... iccttiteiieee e eeerieeeee e seavveeeeas 255257
TABLE 89, BATON-ECB96: DATA AND LENGTH ...cciiiittrieiiee e seiavveeeeas 256258
TABLE 90, BATON-CBC128: DATA AND LENGTH....cccccvieiiieiee e 256258
TABLE 91, BATON-COUNTER: DATA AND LENGTH ..utttiiiieieiiieeirreeeeee e seiavveeeeas 257259
TABLE 92, BATON-SHUFFLE: DATA AND LENGTH ..ucvvtiiiiieiii e savveeeeas 257259
TABLE 93, JUNIPER-ECB128: DATA AND LENGTH....ccuviiiiieiii e eivveeea 258260
TABLE 94, JUNIPER-CBC128: DATA AND LENGTHcvvviiiiieiie e sevvveeeeas 259261
TABLE 95, JUNIPER-COUNTER: DATA AND LENGTH ..vvvviiviiiiiiiiiieeeeee e, 259261
TABLE 96, JUNIPER-SHUFFLE: DATA AND LENGTH ..ouvviiiieiiiiiiciieeeeeee e 259261
TABLE 97, MD2: DATA LENGTH ..utttiiiiiiiiiiettiieie e seittreeere s e ssbase e e e e s e s s snsrbneeeas 260262
TABLE 98, GENERAL-LENGTH MD2-HMAC: KEY AND DATA LENGTHcooeevvvreee. 261263
TABLE 99, MD5: DATA LENGTH ..utttiiiiiiiiiieitteeeie e e sitrerrre s s e s ssbaseee s s s e s ssnssbaeeeas 262264
TABLE 100, GENERAL-LENGTH MD5-HMAC: KEY AND DATA LENGTHcocvvvveeee. 263265
TABLE 101, SHA-1: DATA LENGTH ceetiiiiiiietteeeie e e sitreeere s s e s sssbaseee e e s e s sesssbaeees 264266
TABLE 102, GENERAL-LENGTH SHA-1-HMAC: KEY AND DATA LENGTH................ 265267
TABLE 103, FASTHASH: DATA LENGTH....uutttiiiiieiic ettt eesvreee e e ssvveeeeas 266268
TABLE 104, MD5 MACING IN SSL 3.0: KEY AND DATA LENGTH ..evvvereeeeeeiieiivveeenn, 281283
TABLE 105, SHA-1 MACING IN SSL 3.0: KEY AND DATA LENGTH w.eevveeeeiiiivreeeen, 282284
TABLE 106, RIPE-MD 128: DATA LENGTH ...uttiiiiiiiiiiiirieeiie e eeevieeeee e eavveeeeas 289291
TABLE 107, GENERAL-LENGTH RIPE-MD 128-HMAC: ..., 289291
TABLE 108, RIPE-MD 160: DATA LENGTH ...uttiiiiiiiiiiieirreeiie e eeevveeeee e svveeeeas 290292
TABLE 109, GENERAL-LENGTH RIPE-MD 160-HMAC: ..., 291293
1. Foreword

As cryptography begins to see wide application and acceptance, one thing is increasingly
clear: if it is going to be as effective as the underlying technology allows it to be, there

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 2

must be interoperable standards. Even though vendors may agree on the basic
cryptographic techniques, compatibility between implementations is by no means
guaranteed. Interoperability requires strict adherence to agreed-upon standards.

Towards that goal, RSA Laboratories has developed, in cooperation with representatives
of industry, academia and government, a family of standards called Public-Key
Cryptography Standards, or PKCS for short.

PKCS is offered by RSA Laboratories to developers of computer systems employing
public-key and related technology. It is RSA Laboratories intention to improve and
refine the standards in conjunction with computer system developers, with the goal of
producing standards that most if not all developers adopt.

Therole of RSA Laboratories in the standards-making processis four-fold:
1. Publish carefully written documents describing the standards.

2. Solicit opinions and advice from developers and users on useful or
necessary changes and extensions.

3. Publish revised standards when appropriate.
4. Provide implementation guides and/or reference implementations.

During the process of PKCS development, RSA Laboratories retains final authority on

each document, though input from reviewers is clearly influential. However, RSA
Laboratories’ goal is to accelerate the development of formal standards, not to compete
with such work. Thus, when a PKCS document is accepted as a base document for a
formal standard, RSA Laboratories relinquishes its “ownership” of the document, giving
way to the open standards development process. RSA Laboratories may continue to
develop related documents, of course, under the terms described above.

The PKCS family currently includes the following documents:
PKCS #1: RSA Encryption Standard. Version 1.5, November 1993.

PKCS #3: Diffie-Hellman Key-Agreement Standard. Version 1.4, November
1993.

PKCS #5: Password-Based Encryption Standard. Version 1.5, November
1993.

PKCS #6: Extended-Certificate Syntax Standard. Version 1.5, November
1993.

PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November
1993.

Copyright © 1994-1999 RSA Laboratories

Page 3

PKCS #8: Private-Key Information Syntax Standard. Version 1.2, November
1993.

PKCS #9: Selected Attribute Types. Version 1.1, November 1993.

PKCS #10: Certification Request Syntax Standard. Version 1.0, November
1993.

PKCS #11: Cryptographic Token Interface Standard. Version 1.0, April 1995.

PKCS #12: Personal Information Exchange Syntax Standard. Version 1.0 is
under construction.

PKCS documents and information are available online from RSADSI’'s web server. To
get them, go to RSADSI's homepaget { p: / / wwww. r sa. com); then go to RSA
Laboratories; then go to the PKCS page. There is an electronic mailingpksts -

tng”, a rsa.com , for discussion of issues relevant to the “next generation” of the
PKCS standards. To subscribe to this list, send e-madjt@or dono atr sa. comwith

the line 'subscri be pkcs-tng”in the message body. To unsubscribe, send e-mail
to maj ordono at rsa. com with the line ‘Unsubscri be pkcs-tng” in the
message body.

There is also an electronic mailing lisgrypt oki ”, at r sa. com specifically for
discussion and development of PKCS #11. To subscribe to this list, send e-mail to
maj or dono atr sa. com with the line Subscri be cryptoki” in the message
body. To unsubscribe, send e-mail n®j or dono at rsa. com with the line
“unsubscri be cryptoki ”in the message body.

Comments on the PKCS documents, requests to register extensions to the standards, and
suggestions for additional standards are welcomed. Address correspondence to:

PKCS Editor

RSA Laboratories

100 Marine Parkway, Suite 500
Redwood City, CA 94065
(650)595-7703

fax: (650)595-4126
email:pkcs-edi t or atrsa. com

It would be difficult to enumerate all the people and organizations who helped to produce
Version 2.01 of PKCS #11. RSA Laboratories is grateful to each and every one of them.
Especial thanks go to Bruno Couillard of Chrysalis-ITS and John Centafont of NSA for

the many hours they spent writing up parts of this document.

For Version 1.0, PKCS #11’s document editor was Aram Pérez of International Computer
Services, under contract to RSA Laboratories; the project coordinator was Burt Kaliski of

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 4

RSA Laboratories. For Version 2.01, Ray Sidney served as document editor and project
coordinator.

2. Scope

This standard specifies an application programming interface (API), called “Cryptoki,” to
devices which hold cryptographic information and perform cryptographic functions.
Cryptoki, pronounced “crypto-key” and short for “cryptographic token interface,” follows

a simple object-based approach, addressing the goals of technology independence (any
kind of device) and resource sharing (multiple applications accessing multiple devices),
presenting to applications a common, logical view of the device called a “cryptographic
token”.

This document specifies the data types and functions available to an application requiring
cryptographic services using the ANSI C programming language. These data types and
functions will typically be provided via C header files by the supplier of a Cryptoki
library. Generic ANSI C header files for Cryptoki are available from RSADSI’s
webserver. To get them, go to RSADSI'S homep&gée p: / / www. r sa. comn); then

go to RSA Laboratories; then go to the PKCS page. This document and up-to-date errata
for Cryptoki will also be available from the same place.

Additional documents may provide a generic, language-independent Cryptoki interface
and/or bindings between Cryptoki and other programming languages.

Cryptoki isolates an application from the details of the cryptographic device. The
application does not have to change to interface to a different type of device or to run in a
different environment; thus, the application is portable. How Cryptoki provides this
isolation is beyond the scope of this document, although some conventions for the
support of multiple types of device will be addressed here and possibly in a separate
document.

A number of cryptographic mechanisms (algorithms) are supported in this version. In

addition, new mechanisms can be added later without changing the general interface. It is
possible that additional mechanisms will be published from time to time in separate

documents; it is also possible for token vendors to define their own mechanisms

(although, for the sake of interoperability, registration through the PKCS process is

preferable).

Cryptoki Version-2:02.1 is intended for cryptographic devices associated with a single
user, so some features that might be included in a general-purpose interface are omitted.
For example, Cryptoki Version 2-2@loes not have a means of distinguishing multiple
users. The focus is on a single user’'s keys and perhaps a small number—efpublic-key
certificates related to them. Moreover, the emphasis is on cryptography. While the device
may perform useful non-cryptographic functions, such functions are left to other
interfaces.

Copyright © 1994-1999 RSA Laboratories

3. References

ANSI C

ANSI X9.9

ANS| X9.17

ANS| X9.31

ANS| X9.42

ANS| X9.62

CDPD

FIPS PUB 46-2

FIPS PUB 74

FIPS PUB 81

FIPS PUB 113

Page 5

ANSI/ISO. ANS/ISO 9899: American National Sandard for
Programming Languages — (1990.

ANSI. American National Standard X9.9: Financial Institution
Message Authentication Cad&982.

ANSI. American National Standard X9.17: Financial Institution Key
Management (Wholesale) 985.

Accredited Standards Committee X9. Public Key Cryptography Using
Reversible Algorithms for the Financial Services Industry: Part 1: The
RSA Signature AlgorithmWorking draft, March 7, 1993.

Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: Management of Symmetric Algorithm
Keys Using Diffie-HellmanWorking draft, September 21, 1994.

Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: the Elliptic Curve Digital Signature
Algorithm (ECDSA)® Working draft, November 17, 1997.

Ameritech Mobile Communications et al. Cellular Digital Packet
Data System Specifications: Part 406: Airlink Securit993.

National Institute of Standards and Technology (formerly National
Bureau of Standards)FIPS PUB 46-2: Data Encryption Standard.
December 30, 1993.

National Institute of Standards and Technology (formerly National
Bureau of Standards}1PSPUB 74: Guidelines for Implementing and
Using the NBS Data Encryption Standard. April 1, 1981.

National Institute of Standards and Technology (formerly National
Bureau of Standards).FIPS PUB 81: DES Modes of Operation.
December 1980.

National Institute of Standards and Technology (formerly National
Bureau of StandardsfIPSPUB 113: Computer Data Authentication.
May 30, 1985.

FIPS PUB 180-1 National Institute of Standards and TechnoldgS PUB 180-1:

FIPS PUB 186

Secure Hash Standard. April 17, 1995.

National Institute of Standards and TechnoloBiPS PUB 186:
Digital Sgnature Sandard. May 19, 1994.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 6

FORTEZZA CIPG NSA, Workstation Security Products. FORTEZZA Cryptologic

GCS-API

ISO 7816-1

ISO 7816-4

ISO/IEC 9796

PCMCIA

PKCS#1

PKCS#3

PKCS#5

PKCS#7

PKCS#8

PKCS #12 draft

RFC 1319

RFC 1321

Interface Programmers Guide, Revision 1.52. November 1995.

X/Open Company Ltd. Generic Cryptographic Service APl (GCS
API), Base - Draft 2. February 14, 1995.

I1SO. International Standard 7816-1: Identification Cards —
Integrated Circuit(s) with Contacts — Part 1: Physical
Characteristics.1987.

ISO. Identification Cards — Integrated Circuit(s) with Contacts —
Part 4: Inter-industry Commands for Interchang€ommittee draft,
1993.

ISO/IEC. International Standard 9796: Digital Signature Scheme
Giving Message Recoveryuly 1991.

Personal Computer Memory Card International Association. PC Card
Standard. Release 2.1, July 1993.

RSA Laboratories. RSA Encryption Standard/ersion 1.5, November
1993.

RSA Laboratories. Diffie-Hellman Key-Agreement Standarif.ersion
1.4, November 1993.

RSA Laboratories. Password-Based Encryption Standar&/ersion
1.5, November 1993.

RSA Laboratories. Cryptographic Message Syntax Standaxtersion
1.5, November 1993.

RSA Laboratories. Private-Key Information Syntax Standandersion
1.2, November 1993.

RSA Laboratories. Personal Information Exchange Syntax Standard
Version 1.0 draft, April 1997.

B. Kaliski. RFC 1319: The MD2 Message-Digest AlgorithiRSA
Laboratories, April 1992.

R. Rivest. RFC 1321: The MD5 Message-Digest AlgorithivIT
Laboratory for Computer Science and RSA Data Security, Inc., April
1992.

Copyright © 1994-1999 RSA Laboratories

RFC 1421

RFC 1423

RFC 1508

RFC 1509

RFC 2279

Page 7

J. Linn. RFC 1421: Privacy Enhancement for Internet Electronic
Mail: Part I: Message Encryption and Authentication Procedures.
IAB IRTF PSRG, IETF PEM WG, February 1993.

D. Balenson. RFC 1423: Privacy Enhancement for Internet Electronic
Mail: Part I11: Algorithms, Modes, and Identifiers. TISand IAB IRTF
PSRG, IETF PEM WG, February 1993.

J. Linn. RFC 1508: Generic Security Services Application
Programming Interface. Geer Zolot Associates, September 1993.

J. Wray. RFC 1509: Generic Security Services API: C-bindings.
Digital Equipment Corporation, September 1993.

F. Yergeau. RFC 2279: UTF-8, a transformation format of 1SO 10646

X.500

X.509

X.680

X.690

4. Definitions

Alis Technologies, January 1998.

ITU-T (formerly CCITT). Recommendation X.500: The Directory—
Overview of Concepts and Servicd938.

ITU-T (formerly CCITT). Recommendation X.509: The Directory—
Authentication Framework1993. (Proposed extensions to X.509 are
given in ISO/IEC 9594-8 PDAM 1: Information Technology—Open
Systems Interconnection—The Directory: Authentication Framework—
Amendment 1: Certificate Extensions. 1994

ITU-T (formerly CCITT). Recommendation X.680: Information
Technology-- Abstract Syntax Notation One (ASN.1): Specification of
Basic Notation.July 1994.

ITU-T (formerly CCITT). Recommendation X.690: Information
Technology—ASN.1 Encoding Rules: Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER), and Distinguished
Encoding Rules (DER)July 1994.

For the purposes of this standard, the following definitions apply:

API Application programming interface.

Application Any computer program that calls the Cryptoki

interface.

ASN.1 Abstract Syntax Notation One, as defined in X.680.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 8

Attribute
BATON
BER

CAST

CAST3

CASTS

CAST 128

CBC

CDMF

Certificate

Cryptographic Device

Cryptoki

Cryptoki library

DER

DES

DSA

A characteristic of an object.
MISSI's BATON block cipher.
Basic Encoding Rules, as defined in X.690.

Entrust Technologies’ proprietary symmetric block
cipher.

Entrust Technologies’ proprietary symmetric block
cipher.

Another name for Entrust Technologies’ symmetric
block cipher CAST128. CAST128 is the preferred
name.

Entrust Technologies’ symmetric block cipher.

Cipher-Block Chaining mode, as defined in FIPS PUB
81.

Commercial Data Masking Facility, a block
encipherment method specified by International
Business Machines Corporation and based on DES.

A signed message binding a subject name and a public
key, or a subject name and a set of attributes.

A device storing cryptographic information and
possibly performing cryptographic functions. May be
implemented as a smart card, smart disk, PCMCIA
card, or with some other technology, including
software-only.

The Cryptographic Token Interface defined in this
standard.

A library that implements the functions specified in
this standard.

Distinguished Encoding Rules, as defined in X.690.

Data Encryption Standard, as defined in FIPS PUB 46-
2.

Digital Signature Algorithm, as defined in FIPS PUB
186.

Copyright © 1994-1999 RSA Laboratories

ECB

ECDSA
FASTHASH
IDEA
JUNIPER
KEA
LYNKS

MAC

MD2

MD5

M echanism
OAEP

Object

PIN
RSA
RC2

RC4

RC5

Reader

Session

Page 9
Electronic Codebook mode, as defined in FIPS PUB
81.
Elliptic Curve DSA, asin ANSI X9.62.
MISSI's FASTHASH message-digesting algorithm.
Ascom Systec’s symmetric block cipher.
MISSI's JUNIPER block cipher.
MISSI's Key Exchange Algorithm.
A smart card manufactured by SPYRUS.

Message Authentication Code, as defined in ANSI
X9.9.

RSA Data Security, Inc.'s MD2 message-digest
algorithm, as defined in RFC 1319.

RSA Data Security, Inc.'s MD5 message-digest
algorithm, as defined in RFC 1321.

A process for implementing a cryptographic operation.
Optimal Asymmetric Encryption Padding for RSA.

An item that is stored on a token. May be data, a
certificate, or a key.

Personal Identification Number.
The RSA public-key cryptosystem.
RSA Data Security’'s RC2 symmetric block cipher.

RSA Data Security’'s proprietary RC4 symmetric
stream cipher.

RSA Data Security’'s RC5 symmetric block cipher.

The means by which information is exchanged with a
device.

A logical connection between an application and a
token.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 10

SET

SHA-1

Slot
SKIPJACK
SSL

Subject Name

SO

Token

User

UTE-8

The Secure Electronic Transaction protocol.

The (revised) Secure Hash Algorithm, as defined in
FIPS PUB 180-1.

A logical reader that potentially contains a token.
MISSI's SKIPJACK block cipher.
The Secure Sockets Layer 3.0 protocol.

The X.500 distinguished name of the entity to which a
key is assigned.

A Security Officer user.

The logical view of a cryptographic device defined by
Cryptoki.

The person using an application that interfaces to
Cryptoki.

Universal Character Set (UCS) transformation format

(UTF) that represents 1ISO 10646 and UNICODE
strings with a variable number of octets.

5. Symbolsand abbreviations

The following symbols are used in this standard:

Table 1, Symbols
Symbol | Definition
N/A Not applicable
R/O Read-only
R/W Read/write

The following prefixes are used in this standard:

Table 2, Prefixes

Prefix

Description

Copyright © 1994-1999 RSA Laboratories

Prefix | Description

C_ Function

CK_ Data type or general constant
CKA_ | Attribute

CKC_ | Certificate type

CKF_ | Bitflag

CKH Harware feature type
CKK_ | Keytype

CKM_ | Mechanism type

CKN_ | Notification

CKO_ | Object class

CKS_ | Session state

CKR_ | Returnvaue

CKU_ | User type

h ahandle

ul aCK_ULONG

p apointer

pb apointer toaCK_BYTE
ph apointer to ahandle

pul apointer to aCK_ULONG

Cryptoki isbased on ANSI C types, and defines the following data types:

Page 11

/* an unsigned 8-bit val ue */
t ypedef unsigned char CK BYTE;

/* an unsigned 8-bit character */
typedef CK BYTE CK CHAR,

/* an 8-bit UTF-8 character */
t ypedef CK BYTE CK UTF8CHAR; |

/* a BYTE-sized Bool ean flag */
typedef CK BYTE CK BBOCOL;

/* an unsigned value, at least 32 bits |long */
t ypedef unsigned |ong int CK _ULONG

/* a signed value, the sanme size as a CK_ULONG */
typedef long int CK _LONG

/* at least 32 bits; each bit is a Boolean flag */

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 12

typedef CK _ULONG CK_FLAGS;

Cryptoki aso uses pointers to some of these data types, as well as to the type voi d,
which are implementation-dependent. These pointer types are:

CK_BYTE_PTR /* Pointer to a CK BYTE */
CK_CHAR_PTR /* Pointer to a CK CHAR */
CK_UTF8CHAR PTR /* Pointer to a CK UTF8CHAR */
CK_ULONG_PTR /* Pointer to a CK_ULONG */
CK_vd D _PTR /* Pointer to a void */

Cryptoki also defines a pointer to a CK_VOID _PTR, which is implementation-
dependent:

CK_VO D PTR PTR /* Pointer to a CK_VO D PTR */

In addition, Cryptoki defines a C-style NULL pointer, which is distinct from any valid
pointer:

NULL_PTR /* A NULL pointer */

It follows that many of the data and pointer types will vary somewhat from one
environment to another (e.g., a CK_ULONG will sometimes be 32 bits, and sometimes
perhaps 64 bits). However, these details should not affect an application, assuming it is
compiled with Cryptoki header files consistent with the Cryptoki library to which the
application islinked.

All numbers and values expressed in this document are decimal, unless they are preceded
by “Ox”, in which case they are hexadecimal values.

TheCK_CHAR data type holds characters from the following table, taken from ANSI C:

Table 3, Character Set

Category Characters

Letters ABCDEFGHIJKLMNOPQRSTUVWXYF
abcdefghijklmnopqrstuvwxyz

Numbers 0123456789

Graphic characters !'“#% & ()*+,-./:;<=>?2[\]1"_{]|}~

Blank character o

TheCK UTF8CHAR data type holds UTF-8 encoded Unicode characters as specified in
REC2279. UTF-8 allows internationalization while maintaining backward compatibility
with the Local String definition of PKCS #11 version 2.01.

Copyright © 1994-1999 RSA Laboratories

Page 13

In Cryptoki, aflag is a Boolean flag that can be TRUE or FALSE. A zero value means
the flag is FALSE, and a nonzero value means the flag is TRUE. Cryptoki defines these
macros, if needed:

#i f ndef FALSE
#defi ne FALSE O
#endi f

#i f ndef TRUE

#defi ne TRUE (! FALSE)

#endi f
Portable computing devices such as smart cards, PCMCIA cards, and smart diskettes are
ideal tools for implementing public-key cryptography, as they provide a way to store the
private-key component of a public-key/private-key pair securely, under the control of a
single user. With such a device, a cryptographic application, rather than performing
cryptographic operations itself, utilizes the device to perform the operations, with
sensitive information such as private keys never being revealed. As more applications are
developed for public-key cryptography, a standard programming interface for these
devices becomes increasingly valuable. This standard addresses this need.

6. General overview

6.1 Design goals

Cryptoki was intended from the beginning to be an interface between applications and all
kinds of portable cryptographic devices, such as those based on smart cards, PCMCIA
cards, and smart diskettes. There are aready standards (de facto or officia) for
interfacing to these devices at some level. For instance, the mechanical characteristics
and electrical connections are well-defined, as are the methods for supplying commands
and receiving results. (See, for example, 1SO 7816, or the PCMCIA specifications.)

What remained to be defined were particular commands for performing cryptography. It
would not be enough simply to define command sets for each kind of device, as that
would not solve the general problem of an application interface independent of the
devicee To do so is «ill a long-term goal, and would certainly contribute to
interoperability. The primary goa of Cryptoki was a lower-level programming interface
that abstracts the details of the devices, and presents to the application a common model
of the cryptographic device, called a “cryptographic token” (or simply “token”).

A secondary goal was resource-sharing. As desktop multi-tasking operating systems
become more popular, a single device should be shared between more than one
application. In addition, an application should be able to interface to more than one

device at a given time.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 14

It is not the goal of Cryptoki to be a generic interface to cryptographic operations or
security services, although one certainly could build such operations and services with the
functions that Cryptoki provides. Cryptoki is intended to complement, not compete with,

such emerging and evolving interfaces as “Generic Security Services Application
Programming Interface” (RFC 1508 and RFC 1509) and “Generic Cryptographic Service
API" (GCS-API) from X/Open.

6.2 Genera mode

Cryptoki's general model is illustrated in the following figure. The model begins with one
or more applications that need to perform certain cryptographic operations, and ends with
one or more cryptographic devices, on which some or all of the operations are actually
performed. A user may or may not be associated with an application.

Application 1

Application k

v

v

Other Security Lavers

Other Security Lavers

v

v

Cryptoki

Cryptoki

_l

l_l

Device Contention/Synchronization

l_l

_l

Slot 1

Slot n

I L

I L

Token 1
(Device 1)

Token n
(Device n)

Figure 1, General Cryptoki Model

Cryptoki provides an interface to one or more cryptographic devices that are active in the
system through a number of “slots”. Each slot, which corresponds to a physical reader or
other device interface, may contain a token. A token is typically “present in the slot”
when a cryptographic device is present in the reader. Of course, since Cryptoki provides
a logical view of slots and tokens, there may be other physical interpretations. It is
possible that multiple slots may share the same physical reader. The point is that a

Copyright © 1994-1999 RSA Laboratories

Page 15

system has some number of slots, and applications can connect to tokens in any or all of
those dlots.

A cryptographic device can perform some cryptographic operations, following a certain
command set; these commands are typically passed through standard device drivers, for
instance PCMCIA card services or socket services. Cryptoki makes each cryptographic

device look logically like every other device, regardless of the implementation
technology. Thus the application need not interface directly to the device drivers (or even

know which ones are involved); Cryptoki hides these details. Indeed, the underlying
“device” may be implemented entirely in software (for instance, as a process running on a
server)—no special hardware is necessary.

Cryptoki is likely to be implemented as a library supporting the functions in the interface,
and applications will be linked to the library. An application may be linked to Cryptoki
directly; alternatively, Cryptoki can be a so-called “shared” library (or dynamic link
library), in which case the application would link the library dynamically. Shared
libraries are fairly straightforward to produce in operating systems such as Microsoft
Windows and OS/2, and can be achieved without too much difficulty in UNIX and DOS
systems.

The dynamic approach certainly has advantages as new libraries are made available, but
from a security perspective, there are some drawbacks. In particular, if a library is easily
replaced, then there is the possibility that an attacker can substitute a rogue library that
intercepts a user’'s PIN. From a security perspective, therefore, direct linking is generally
preferable, although code-signing techniques can prevent many of the security risks of
dynamic linking. In any case, whether the linking is direct or dynamic, the programming
interface between the application and a Cryptoki library remains the same.

The kinds of devices and capabilities supported will depend on the particular Cryptoki
library. This standard specifies only the interface to the library, not its features. In
particular, not all libraries will support all the mechanisms (algorithms) defined in this
interface (since not all tokens are expected to support all the mechanisms), and libraries
will likely support only a subset of all the kinds of cryptographic devices that are
available. (The more kinds, the better, of course, and it is anticipated that libraries will be
developed supporting multiple kinds of token, rather than just those from a single
vendor.) It is expected that as applications are developed that interface to Cryptoki,
standard library and token “profiles” will emerge.

6.3 Logical view of atoken

Cryptoki’s logical view of a token is a device that stores objects and can perform

cryptographic functions. Cryptoki defines three classes of object: data, certificates, and
keys. A data object is defined by an application. A certificate object ste%esrarpublic-key
certificate. A key object stores a cryptographic key. The key may be a public key, a

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 16

private key, or a secret key; each of these types of keys has subtypes for use in specific
mechanisms. Thisview isillustrated in the following figure:

Object

—_— v T,

Data Key Certificate

— v T,

Public Key Private Key Secret Key

Figure 2, Object Hierarchy

Objects are also classified according to their lifetime and visibility. “Token objects” are
visible to all applications connected to the token that have sufficient permission, and
remain on the token even after the “sessions” (connections between an application and the
token) are closed and the token is removed from its slot. “Session objects” are more
temporary: whenever a session is closed by any means, all session objects created by that
session are automatically destroyed. In addition, session objects are only visible to the
application which created them.

Further classification defines access requirements. Applications are not required to log
into the token to view “public objects”; however, to view “private objects”, a user must
be authenticated to the token by a PIN or some other token-dependent method (for
example, a biometric device).

See Table 6FabléFable6 on page 22323 for further clarification on access to objects.

A token can create and destroy objects, manipulate them, and search for them. It can also
perform cryptographic functions with objects. A token may have an internal random
number generator.

It is important to distinguish between the logical view of a token and the actual
implementation, because not all cryptographic devices will have this concept of “objects,”
or be able to perform every kind of cryptographic function. Many devices will simply
have fixed storage places for keys of a fixed algorithm, and be able to do a limited set of
operations. Cryptoki's role is to translate this into the logical view, mapping attributes to
fixed storage elements and so on. Not all Cryptoki libraries and tokens need to support
every object type. It is expected that standard “profiles” will be developed, specifying
sets of algorithms to be supported.

“Attributes” are characteristics that distinguish an instance of an object. In Cryptoki,
there are general attributes, such as whether the object is private or public. There are also

Copyright © 1994-1999 RSA Laboratories

Page 17

attributes that are specific to a particular type of object, such as a modulus or exponent for
RSA keys.

6.4 Users

This version of Cryptoki recognizes two token user types. One type is a Security Officer

(SO). The other typeisthe normal user. Only the normal user is allowed accessto private

objects on the token, and that access is granted only after the normal user has been
authenticated. Some tokens may also require that a user be authenticated before any
cryptographic function can be performed on the token, whether or not it involves private

objects. The role of the SO is to initialize a token and to set the normal user’s PIN (or
otherwise define, by some method outside the scope of this version of Cryptoki, how the
normal user may be authenticated), and possibly to manipulate some public objects. The
normal user cannot log in until the SO has set the normal user’s PIN.

Other than the support for two types of user, Cryptoki does not address the relationship
between the SO and a community of users. In particular, the SO and the normal user may
be the same person or may be different, but such matters are outside the scope of this
standard.

With respect to PINs that are entered through an application, Cryptoki assumes only that
they are variable-length strings of characters from the set in Table Jfa#=3. Any \
translation to the device’s requirements is left to the Cryptoki library. The following
iIssues are beyond the scope of Cryptoki:

* Any padding of PINs.
* How the PINs are generated (by the user, by the application, or by some other means).

PINs that are supplied by some means other than through an applieagiorPiNs
entered via a PINpad on the token) are even more abstract. Cryptoki knows how to wait
(if need be) for such a PIN to be supplied and used, and little more.

6.5 Applicationsand their use of Cryptoki

To Cryptoki, an application consists of a single address space and all the threads of
control running in it. An application becomes a “Cryptoki application” by calling the
Cryptoki functionC_Initialize (see Section 11.4) from one of its threads; after this call is
made, the application can call other Cryptoki functions. When the application is done
using Cryptoki, it calls the Cryptoki functid®_Finalize (see Section 11.4) and ceases to

be a Cryptoki application.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 18

6.5.1 Applicationsand processes

In general, on most platforms, the previous paragraph means that an application consists
of asingle process.

Consider a UNIX process P which becomes a Cryptoki application by calling
C_Initialize, and then usesthe f or k() system call to create a child process C. Since P
and C have separate address spaces (or will when one of them performs a write operation,
if the operating system follows the copy-on-write paradigm), they are not part of the same
application. Therefore, if C needs to use Cryptoki, it needs to perform its own
C_Initialize call. Furthermore, if C needs to be logged into the token(s) that it will
access via Cryptoki, it needs to log into them even if P already logged in, since P and C
are completely separate applications.

In this particular case (when C is the child of a process which is a Cryptoki application),
the behavior of Cryptoki is undefined if C triesto use it without its own C_Initialize call.
Ideally, such an attempt would return the value CKR_CRYPTOKI_NOT _INITIALIZED;
however, because of the way f or k() works, insisting on this return value might have a
bad impact on the performance of libraries. Therefore, the behavior of Cryptoki in this
situation is left undefined. Applications should definitely not attempt to take advantage
of any potential “shortcuts” which might (or might not!) be available because of this.

In the scenario specified abowg, should actually calC_Initialize whether or not it

needs to use Cryptoki; if it has no need to use Cryptoki, it should the@ délhalize
immediately thereafter. This (having the child immediately €allnitialize and then

call C_Finalize if the parent is using Cryptoki) is considered to be good Cryptoki
programming practice, since it can prevent the existence of dangling duplicate resources
that were created at the time of ther k() call; however, it is not required by Cryptoki.

6.5.2 Applicationsand threads

Some applications will access a Cryptoki library in a multi-threaded fashion. Cryptoki

| Version2.0lenables applications to provide information to libraries so that they can give
appropriate support for multi-threading. In particular, when an application initializes a
Cryptoki library with a call toC_lInitialize, it can specify one of four possible multi-
threading behaviors for the library:

1. The application can specify that it will not be accessing the library concurrently from
multiple threads, and so the library need not worry about performing any type of
locking for the sake of thread-safety.

2. The application can specify thatwill be accessing the library concurrently from
multiple threads, and the library must be able to use native operation system
synchronization primitives to ensure proper thread-safe behavior.

Copyright © 1994-1999 RSA Laboratories

Page 19

3. The application can specify that it will be accessing the library concurrently from
multiple threads, and the library must use a set of application-supplied
synchronization primitives to ensure proper thread-safe behavior.

4. The application can specify that it will be accessing the library concurrently from
multiple threads, and the library must use either the native operation system
synchronization primitives or a set of application-supplied synchronization primitives
to ensure proper thread-safe behavior.

The 3% and 4™ types of behavior listed above are appropriate for multi-threaded
applications which are not using the native operating system thread model. The
application-supplied synchronization primitives consist of four functions for handling

mutex (mutual exclusion) objects in the application’s threading model. Mutex objects are
simple objects which can be in either of two states at any given time: unlocked or locked.
If a call is made by a thread to lock a mutex which is already locked, that thread blocks
(waits) until the mutex is unlocked; then it locks it and the call returns. If more than one
thread is blocking on a particular mutex, and that mutex becomes unlocked, then exactly
one of those threads will get the lock on the mutex and return control to the caller (the
other blocking threads will continue to block and wait for their turn).

See Section 9.7 for more information on Cryptoki’'s view of mutex objects.

In addition to providing the above thread-handling information to a Cryptoki library at
initialization time, an application can also specify whether or not application threads
executing library calls may use native operating system calls to spawn new threads.

6.6 Sessions

Cryptoki requires that an application open one or more sessions with a token to gain

access to the token’s objects and functions. A session provides a logical connection

between the application and the token. A session can be a read/write (R/W) session or a
read-only (R/O) session. Read/write and read-only refer to the access to token objects,
not to session objects. In both session types, an application can create, read, write and
destroy session objects, and read token objects. However, only in a read/write session
can an application create, modify, and destroy token objects.

After it opens a session, an application has access to the token’s public objects. All
threads of a given application have access to exactly the same sessions and the same
session objects. To gain access to the token’s private objects, the normal user must log in
and be authenticated.

When a session is closed, any session objects which were created in that session are
destroyed. This holds even for session objects which are “being used” by other sessions.
That is, if a single application has multiple sessions open with a token, and it uses one of
them to create a session object, then that session object is visible through any of that

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 20

application’s sessions. However, as soon as the session that was used to create the object
Is closed, that object is destroyed.

Cryptoki supports multiple sessions on multiple tokens. An application may have one or
more sessions with one or more tokens. In general, a token may have multiple sessions
with one or more applications. A particular token may allow an application to have only
a limited number of sessions—or only a limited number of read/write sessions-- however.

An open session can be in one of several states. The session state determines allowable
access to objects and functions that can be performed on them. The session states are
described in Section 6.6.1 and Section 6.6.2.

6.6.1 Read-only session states

A read-only session can be in one of two states, as illustrated in the following figure.

When the session is initially opened, it is in either the “R/O Public Session” state (if the

application has no previously open sessions that are logged in) or the “R/O User
Functions” state (if the application already has an open session that is logged in). Note
that read-only SO sessions do not exist.

Close Session/
Device Removed

R/O Public

Open Session Session

Login User

Close Session/
Device Removed

R/O User
Functions

Open Session

Figure 3, Read-Only Session States

The following table describes the session states:

Table 4, Read-Only Session States

Copyright © 1994-1999 RSA Laboratories

Page 21

State Description

R/O Public Session | The application has opened aread-only session. The application
has read-only access to public token objects and read/write access
to public session objects.

R/O User Functions | The normal user has been authenticated to the token. The
application has read-only access to all token objects (public or
private) and read/write access to all session objects (public or
private).

6.6.2 Read/write session states

A read/write session can be in one of three states, as illustrated in the following figure.

When the session is opened, it is in either the “R/W Public Session” state (if the

application has no previously open sessions that are logged in), the “R/W User

Functions” state (if the application already has an open session that the normal user is
logged into), or the “R/W SO Functions” state (if the application already has an open

session that the SO is logged into).

R/W SO
Functions

Close Session/

Open Session Device Removed

Open Session Close Session/

R/W Public
Session

Device Removed

Login User

Close Session/

Open Session >
Device Removed

R/W User
Functions

Figure 4, Read/Write Session States
The following table describes the session states:

Table5b, Read/Write Session States

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

22

State

Description

R/W Public Session

The application has opened a read/write session. The application
has read/write access to al public objects.

R/W SO Functions | The Security Officer has been authenticated to the token. The
application has read/write access only to public objects on the
token, not to private objects. The SO can set the normal usef’s
PIN.

R/W User The normal user has been authenticated to the token. The

Functions application has read/write access to all objects.

6.6.3 Permitted object accesses by sessions

The following table summarizes the kind of access each type of session has to each type
of object. A given type of session has either read-only access, read/write access, or no
access whatsoever to a given type of object.

Note that creating or deleting an object requires read/write access.tp & “R/O User
Functions” session cannot create or delete a token object.

Table 6, Accessto Different Types Objects by Different Types of Sessions

Type of session
R/O R/W R/O R/W R/W
Type of ob] ect Public Public User User SO
Public session object R/W R/W R/W R/W R/W
Private session object R/W R/W
Public token object R/O R/W R/O R/W R/W
Private token object R/O R/W

As previously indicated, the access to a given session object which is shown in Table
6Fable6Fable 6 is limited to sessions belonging to the application which owns that
object (.e., which created that object).

Copyright © 1994-1999 RSA Laboratories

Page 23

6.6.4 Session events

Session events cause the session state to change. The following table describes the events:

Table 7, Session Events

Event Occurswhen...

LogIn SO the SO is authenticated to the token.

Log In User the normal user is authenticated to the token.

Log Out the application logs out the current user (SO or normal user).
Close Session the application closes the session or closes all sessions.

Device Removed | the device underlying the token has been removed from its slot.

When the device is removed, all sessions of all applications are automatically logged oui.
Furthermore, all sessions any applications have with the device are closed (this latter
behavior was not present in Version 1.0 of Cryptoki)—an application cannot have a
session with a token which is not present. Realistically, Cryptoki may not be constantly
monitoring whether or not the token is present, and so the token's absence could
conceivably not be noticed until a Cryptoki function is executed. If the token is re-
inserted into the slot before that, Cryptoki might never know that it was missing.

In Cryptoki Version-2.02.1, all sessions that an application has with a token must have
the same login/logout statuse(, for a given application and token, one of the following
holds: all sessions are public sessions; all sessions are SO sessions; or all sessions are
user sessions). When an application’s session logs into a sbkenfthat application’s
sessions with that token become logged in, and when an application’s session logs out of
a token,all of that application’s sessions with that token become logged out. Similarly,

for example, if an application already has a R/O user session open with a token, and then
opens a R/W session with that token, the R/W session is automatically logged in.

This implies that a given application may not simultaneously have SO sessions and user
sessions open with a given token. It also implies that if an application has a R/W SO
session with a token, then it may not open a R/O session with that token, since R/O SO
sessions do not exist. For the same reason, if an application has a R/O session open, then
it may not log any other session into the token as the SO.

6.6.5 Session handlesand object handles

A session handle is a Cryptoki-assigned value that identifies a session. It is in many ways
akin to a file handle, and is specified to functions to indicate which session the function
should act on. All threads of an application have equal access to all session handles. That
IS, anything that can be accomplished with a given file handle by one thread can also be
accomplished with that file handle by any other thread of the same application.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 24

Cryptoki also has object handles, which are identifiers used to manipulate Cryptoki
objects. Object handles are similar to session handles in the sense that visibility of a
given object through an object handle is the same among al threads of a given
application. R/O sessions, of course, only have read-only access to token objects,
whereas R/W sessions have read/write access to token objects.

Valid session handles and object handles in Cryptoki always have nonzero values. For
developers’ convenience, Cryptoki defines the following symbolic value:

#defi ne CK_I NVALI D_HANDLE 0
6.6.6 Capabilities of sessions

Very roughly speaking, there are three broad types of operations an open session can be
used to perform: administrative operations (such as logging in); object management
operations (such as creating or destroying an object on the token); and cryptographic
operations (such as computing a message digest). Cryptographic operations sometimes
require more than one function call to the Cryptoki API to complete. In general, a single
session can perform only one operation at a time; for this reason, it may be desirable for a
single application to open multiple sessions with a single token. For efficiency’'s sake,
however, a single session on some tokens can perform the following pairs of operation
types simultaneously: message digesting and encryption; decryption and message
digesting; signature or MACing and encryption; and decryption and verifying signatures
or MACs. Details on performing simultaneous cryptographic operations in one session
are provided in Section 11.13.

A consequence of the fact that a single session can, in general, perform only one
operation at a time is thatn application should never make multiple simultaneous
function calls to Cryptoki which use a common session. If multiple threads of an
application attempt to use a common session concurrently in this fashion, Cryptoki does
not define what happens. This means that if multiple threads of an application all need to
use Cryptoki to access a particular token, it might be appropriate for each thread to have
its own session with the token, unless the application can ensure by some other means
(e.g., by some locking mechanism) that no sessions are ever used by multiple threads
simultaneously. This is true regardless of whether or not the Cryptoki library was
initialized in a fashion which permits safe multi-threaded access to it. Even if it is safe to
access the library from multiple threads simultaneously, it is still not necessarily safe to
usea particular session from multiple threads simultaneously.

6.6.7 Example of use of sessions

We give here a detailed and lengthy example of how multiple applications can make use
of sessions in a Cryptoki library. Despite the somewhat painful level of detail, we highly
recommend reading through this example carefully to understand session handles and
object handles.

Copyright © 1994-1999 RSA Laboratories

Page 25

We caution that our example is decidedly not meant to indicate how multiple applications

should use Cryptoki simultaneously; rather, it is meant to clarify what uses of Cryptoki’s
sessions and objects and handles are permissible. In other words, instead of
demonstrating good technique here, we demonstrate “pushing the envelope”.

For our example, we suppose that two applicatidnandB, are using a Cryptoki library

to access a single tokdn Each application has two threads runniddhas threads 1l

andA2, andB has thread81 andB2. We assume in what follows that there are no
instances where multiple threads of a single application simultaneously use the same
session, and that the events of our example occur in the order specified, without
overlapping each other in time.

1. Al andB1 each initialize the Cryptoki library by callir@ Initialize (the specifics of
Cryptoki functions will be explained in Section 11). Note that exactly one call to
C_Initialize should be made for each application (as opposed to one call for every
thread, for example).

2. Al opens a R/W session and receives the session handle 7 for the session. Since this
Is the first session to be opened Aqgrit is a public session.

3. A2 opens a R/O session and receives the session handle 4. Sinck’slexisting
sessions are public sessions, session 4 is also a public session.

4. Al attempts to log the SO into session 7. The attempt fails, because if session 7
becomes an SO session, then session 4 does, as well, and R/O SO sessions do not
exist. Al receives an error code indicating that the existence of a R/O session has
blocked this attempt to log in (CKR_SESSION_READ_ONLY_EXISTS).

5. A2 logs the normal user into session 7. This turns session 7 into a R/W user session,
and turns session 4 into a R/O user session. Note that beéchasel A2 belong to
the same application, they have equal access to all sessions, and thaisrahle
to perform this action.

6. A2 opens a R/W session and receives the session handle 9. Since’slexgisting
Sessions are user sessions, session 9 is also a user session.

7. Al closes session 9.

8. Bl attempts to log out session 4. The attempt fails, becawaselB have no access
rights to each other's sessions or objecBl receives an error message which
indicates that there is no such session handle
(CKR_SESSION_HANDLE_INVALID).

9. B2 attempts to close session 4. The attempt fails in precisely the same BHyg as

attempt to log out session 4 failed ie(B2 receives a
CKR_SESSION_HANDLE_INVALID error code).

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 26

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

B1 opens a R/W session and receives the session handle 7. Note that, as far asB is
concerned, this is the first occurrence of session handle 7. A’s session 7 an@®’s
session 7 are completely different sessions.

B1 logs the SO intoB’s] session 7. This turr®’s session 7 into a R/W SO session,
and has no effect on eitherAfs sessions.

B2 attempts to open a R/O session. The attempt fails, Bingleeady has an SO
session open, and R/O SO sessions do not eXdt.receives an error message
indicating that the existence of an SO session has blocked this attempt to open a R/O
session (CKR_SESSION_READ_WRITE_SO_EXISTS).

Al uses A’s] session 7 to create a session obf@ttof some sort and receives the
object handle 7. Note that a Cryptoki implementation may or may not support
separate spaces of handles for sessions and objects.

B1 uses B’s] session 7 to create a token obj@2 of some sort and receives the
object handle 7. As with session handles, different applications have no access rights
to each other’s object handles, andBse object handle 7 is entirely different from

A’s object handle 7. Of course, sinBé& is an SO session, it cannot create private
objects, and s®2 must be a public object (B1 attempted to create a private object,

the attempt would fail with error code CKR_USER_NOT_LOGGED_IN or
CKR_TEMPLATE_INCONSISTENT).

B2 uses B’s] session 7 to perform some operation to modify the object associated
with [B’s] object handle 7. This modifi€32.

A1l uses A’s] session 4 to perform an object search operation to get a han@e.for
The search returns object handle 1. Note KAiatobject handle 1 an8’s object
handle 7 now point to the same object.

A1l attempts to useA's] session 4 to modify the object associated wils] object
handle 1. The attempt fails, becadse session 4 is a R/O session, and is therefore
incapable of modifying32, which is a token objectAl receives an error message
indicating that the session is a R/O session (CKR_SESSION_READ_ONLY).

A1l uses A’s] session 7 to modify the object associated wits] object handle 1.
This time, sinceA’s session 7 is a R/W session, the attempt succeeds in modifying
o2

B1 uses B’s] session 7 to perform an object search operation todihdSinceO1l is
a session object belongingAg however, the search does not succeed.

A2 uses A’s] session 4 to perform some operation to modify the object associated
with [A’s] object handle 7. This operation modifi@s.

Copyright © 1994-1999 RSA Laboratories

Page 27

21. A2 uses [A’s] session 7 to destroy the object associated wth] [object handle 1.
This destroy©2.

22. B1 attempts to perform some operation with the object associated Bisthdbject
handle 7. The attempt fails, since there is no longer any such oBjkceceives an

error message indicating that its object handle IS invalid

(CKR_OBJECT_HANDLE_INVALID).

23. Al logs out A’'s] session 4. This turmd’s session 4 into a R/O public session, and

turnsA'’s session 7 into a R/W public session.

24. Al closes A’s] session 7. This destroys the session ol§jdctwhich was created by

A’s session 7.

25. A2 attempt to useA’s] session 4 to perform some operation with the obj
associated withA’s] object handle 7. The attempt fails, since there is no longer
such object. It returns a CKR_OBJECT_HANDLE_INVALID.

ect
any

26. A2 executes a call t6_CloseAllSessions. This closesA’s] session 4. At this point,

if A were to open a new session, the session would not be logges, ih {ould be
a public session).

27. B2 closes B’s] session 7. At this point, B were to open a new session, the session

would not be logged in.

28. A andB each callC_Finalize to indicate that they are done with the Cryptoki library.

6.7 Secondary Authentication

Cryptoki allows an application to specify that a private key should be protected
secondary authentication mechanism. This mechanism is in addition to the standar
mechanism described in section 6.6 for sessions. The mechanism is mostly transp
the application because the Cryptoki implementation does almost all of the work.

The intent of secondary authentication is to provide a means for a cryptographic de
produce digital signatures for non-repudiation with reasonable certainty that on
authorized user could have produced that signature. This capability is bec
increasingly important as digital signature laws are introduced worldwide.

The secondary authentication is based on the following principles:

1. The owner of the private key must be authenticated to the device before sec
authentication can proceed (i.e. C_Login must have been called successfully).

2. If a private key is protected by a secondary authentication PIN, then the device
require that the PIN be presented before each use of the key for any purpose.

by a
d login
arent to

vice to
y the
bming

ondary

» must

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 28

3. All secondary authentication operations are done using a protected path. Only a
protected path can provide reasonable assurance that only the authorized user could
have used the key.

The secondary authentication mechanism adds a couple of subtle points to the way that an
application presents an object to a user and generates new private keys with the additional
protections. The following sections detail the minor_additions to applications that are
required to take full advantage of secondary authentication.

6.7.1 Using Keys Protected by Secondary Authentication

Using a private key protected by secondary authentication uses the same process, and call
sequence, as using a private key that is only protected by the login PIN. In fact,
applications written for Cryptoki Version 2.01 will use secondary authentication without
modification.

When a cryptographic operation, such as a digital signature, is started using a key
protected by secondary authentication, a combination of the Cryptoki implementation and
the device will gather the required PIN value from a protected path. If the PIN is correct,
then the operation is alowed to complete. Otherwise, the function will return an
appropriate error code. The application is not required to gather PIN information from the
user and send it through Cryptoki to the device. It is completely transparent.

The application can detect when Cryptoki and the device will gather a PIN for secondary
authentication by querying the key for the CKA SECONDARY_ AUTH attribute (see
section 10.9). If the attribute value is TRUE, then the application can present a prompt to
the user. Since Cryptoki Version 2.01 applications will not be aware of the
CKA SECONDARY_AUTH attribute, the protected path device should make and
indication to the user that an authentication is required.

6.7.2 Generating Private K eys Protected by Secondary Authentication

To generate a private key protected by secondary authentication, the application supplies
the CKA_SECONDARY_AUTH attribute with value TRUE in the private key template.
If the attribute does not exist in the template or has the value FALSE, then the private key
is generated with the normal login protection. See sections 10.9 and 11.14 for more
information about private key templates and key generation functions respectively.

If the new private key is protected by secondary authentication, a combination of the
Cryptoki implementation and the device will transparently gather the initial PIN value
from a protected path.

Copyright © 1994-1999 RSA Laboratories

Page 29

6.7.3 Chanaqing the Secondary Authentication PIN Value

The application causes the device to change the secondary authentication PIN on a private
key using the C SetAttributeValue function. The template to the function should
contain the CKA SECONDARY_AUTH attribute. The value of
CKA_SECONDARY_AUTH in the template does not matter.

When the Cryptoki implementation finds this attribute in a C_SetAttributeValue
template, it causes the device to gather the appropriate values from a protected path. |If
C_SetAttributeValue is successful, the PIN has been changed to the new value. See
sections 10.9 and 11.7 for more information about private key objects and
C _SetAttributeValue respectively.

6.8 Function overview

The Cryptoki APl consists of a number of functions, spanning slot and token
management and object management, as well as cryptographic functions. These
functions are presented in the following table:

Table 8, Summary of Cryptoki Functions

Category Function Description
General C_Initialize initializes Cryptoki
purpose C Finaize clean up miscellaneous Cryptoki-associated
functions resources
C_Getinfo obtains general information about Cryptoki
C_GetFunctionList obtains entry points of Cryptoki library
functions
Slot andtoken | C_GetSlotList obtains alist of slots in the system
management C_GetSlotinfo obtains information about a particular slot
functions C_GetTokenInfo obtains information about a particular
token
C_WaitForSlotEvent waits for aglot event (token insertion,

removal, etc.) to occur

C_GetMechanismList obtains alist of mechanisms supported by a

token
C_GetMechanisminfo | obtains information about a particular
mechanism
C_InitToken initializes atoken
C_InitPIN initializes the normal user’s PIN
C_SetPIN modifies the PIN of the current user
Session C_OpenSession opens a connection between an appli

cation

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 30

Category Function Description
management and a particular token or sets up an
functions application callback for token insertion
C _CloseSession closes asession
C CloseAllSessions closes al sessions with atoken
C_GetSessioninfo obtains information about the session
C_GetOperationState obtains the cryptographic operations state
of asession
C_SetOperationState sets the cryptographic operations state of a
session
C Login logsinto atoken
C_Logout logs out from atoken
Object C_CreateObject creates an object
management C_CopyObject creates a copy of an object
functions C_DestroyObject destroys an object
C_GetObjectSize obtains the size of an object in bytes
C_GetAttributeValue obtains an attribute value of an object
C_SetAttributeValue modifies an attribute value of an object
C_FindObjectsInit initializes an object search operation
C_FindObjects continues an object search operation
C_FindObjectsFinal finishes an object search operation
Encryption C_Encryptinit initializes an encryption operation
functions C_Encrypt encrypts single-part data
C_EncryptUpdate continues a multiple-part encryption
operation
C_EncryptFina finishes a multiple-part encryption
operation
Decryption C_Decryptlnit initializes a decryption operation
functions C_Decrypt decrypts single-part encrypted data
C_DecryptUpdate continues a multiple-part decryption
operation
C_DecryptFind finishes a multiple-part decryption
operation
Message C _Digestlnit initializes a message-digesting operation
digesting C Digest digests single-part data
functions C_DigestUpdate continues a multiple-part digesting
operation
C _DigestKey digests akey
C _DigestFina finishes a multiple-part digesting operation

Copyright © 1994-1999 RSA Laboratories

Page 31

Category Function Description
Signing C_Signinit initializes a signature operation
and MACing C_Sign signs single-part data
functions C_SignUpdate continues a multiple-part signature
operation
C_SignFinal finishes a multiple-part signature operation

C_SignRecoverlnit

initializes a signature operation, where the
data can be recovered from the signature

C_SignRecover signs single-part data, where the data can
be recovered from the signature
Functions for C_Veifylnit initializes a verification operation
verifying
signatures C Veify verifies asignature on single-part data
and MACs C_VeifyUpdate continues a multiple-part verification
operation
C VeifyFina finishes a multiple-part verification
operation
C_VerifyRecoverlnit initializes a verification operation where
the data is recovered from the signature
C VerifyRecover verifies a signature on single-part data,
where the data is recovered from the
signature
Dual-purpose | C_DigestEncryptUpdate | continues simultaneous multiple-part
cryptographic digesting and encryption operations
functions C_DecryptDigestUpdate | continues simultaneous multiple-part
decryption and digesting operations
C_SignEncryptUpdate | continues simultaneous multiple-part
signature and encryption operations
C_DecryptVerifyUpdate | continues simultaneous multiple-part
decryption and verification operations
Key C_GenerateKey generates a secret key
management C_GenerateKeyPair generates a public-key/private-key pair
functions C_WrapKey wraps (encrypts) akey
C_UnwrapKey unwraps (decrypts) akey
C _DeriveKey derives akey from a base key

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 32

Category Function Description

Random C_SeedRandom mixesin additional seed material to the

number random number generator

generation

functions C_GenerateRandom generates random data

Parallel C_GetFunctionStatus legacy function which always returns

function CKR_FUNCTION_NOT_PARALLEL

management

functions C_CancelFunction legacy function which always returns
CKR_FUNCTION_NOT_PARALLEL

Callback application-supplied function to process

function notifications from Cryptoki

7. Security considerations

As an interface to cryptographic devices, Cryptoki provides a basis for security in a
computer or communications system. Two of the particular features of the interface that
facilitate such security are the following:

1. Accessto private objects on the token, and possibly to cryptographic functions and/or
certificates on the token as well, requires a PIN. Thus, possessing the cryptographic
device that implements the token may not be sufficient to use it; the PIN may aso be
needed.

2. Additional protection can be given to private keys and secret keys by marking them as
“sensitive” or “unextractable”. Sensitive keys cannot be revealed in plaintext off the
token, and unextractable keys cannot be revealed off the token even when encrypted
(though they can still be used as keys).

It is expected that access to private, sensitive, or unextractable objects by means other
than Cryptoki €.g., other programming interfaces, or reverse engineering of the device)
would be difficult.

If a device does not have a tamper-proof environment or protected memory in which to
store private and sensitive objects, the device may encrypt the objects with a master key
which is perhaps derived from the user’'s PIN. The particular mechanism for protecting
private objects is left to the device implementation, however.

Based on these features it should be possible to design applications in such a way that the
token can provide adequate security for the objects the applications manage.

Of course, cryptography is only one element of security, and the token is only one
component in a system. While the token itself may be secure, one must also consider the
security of the operating system by which the application interfaces to it, especially since
the PIN may be passed through the operating system. This can make it easy for a rogue

Copyright © 1994-1999 RSA Laboratories

Page 33

application on the operating system to obtain the PIN; it is also possible that other devices
monitoring communication lines to the cryptographic device can obtain the PIN. Rogue
applications and devices may aso change the commands sent to the cryptographic device
to obtain services other than what the application requested.

It is important to be sure that the system is secure against such attack. Cryptoki may well
play a role here; for instance, a token may be involved in the “booting up” of the system.

We note that none of the attacks just described can compromise keys marked “sensitive,”
since a key that is sensitive will always remain sensitive. Similarly, a key that is
unextractable cannot be modified to be extractable.

An application may also want to be sure that the token is “legitimate” in some sense (for a
variety of reasons, including export restrictions and basic security). This is outside the
scope of the present standard, but it can be achieved by distributing the token with a built-
in, certified public/private-key pair, by which the token can prove its identity. The
certificate would be signed by an authority (presumably the one indicating that the token
Is “legitimate”) whose public key is known to the application. The application would
verify the certificate and challenge the token to prove its identity by signing a time-
varying message with its built-in private key.

Once a normal user has been authenticated to the token, Cryptoki does not restrict which
cryptographic operations the user may perform; the user may perform any operation
supported by the token. Some tokens may not even require any type of authentication to
make use of its cryptographic functions.

8. Platform- and compiler-dependent directivesfor C or C++

There is a large array of Cryptoki-related data types which are defined in the Cryptoki
header files. Certain packing- and pointer-related aspects of these types are platform- and
compiler-dependent; these aspects are therefore resolved on a platform-by-platform (or
compiler-by-compiler) basis outside of the Cryptoki header files by means of
preprocessor directives.

This means that when writing C or C++ code, certain preprocessor directives must be
issued before including a Cryptoki header file. These directives are described in the
remainder of Section 8.

8.1 Structure packing

Cryptoki structures are packed to occupy as little space as is possible. In particular, on
the Win32 and Winl16 platforms, Cryptoki structures should be packed with 1-byte
alignment. In a UNIX environment, it may or may not be necessary (or even possible) to
alter the byte-alignment of structures.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 34

8.2 Pointer-related macros

Because different platforms and compilers have different ways of dealing with different
types of pointers, Cryptoki requires the following 6 macros to be set outside the scope of
Cryptoki:

¢+ CK_PTR

CK_PTRIis the “indirection string” a given platform and compiler uses to make a pointer
to an object. It is used in the following fashion:

typedef CK_BYTE CK_PTR CK_BYTE PTR
¢ CK_DEFINE_FUNCTION

CK_DEFI NE_FUNCTI ON(r et urnType, nane), when followed by a parentheses-
enclosed list of arguments and a function definition, defines a Cryptoki API function in a
Cryptoki library. r et ur nType is the return type of the function, andne is its name.

It is used in the following fashion:

CK_DEFI NE_FUNCTI ON(CK_RV, C_ Initialize)(
CK_ VA D PTR pReserved
)

{
}
¢ CK_DECLARE_FUNCTION

CK_DECLARE_FUNCTI ON(r et ur nType, nane), when followed by a parentheses-
enclosed list of arguments and a semicolon, declares a Cryptoki API function in a
Cryptoki library. r et ur nType is the return type of the function, andne is its name.

It is used in the following fashion:

CK _DECLARE FUNCTION(CK RV, Clnitialize)(
CK_VA D _PTR pReserved
)

¢ CK_DECLARE_FUNCTION_POINTER

CK_DECLARE_FUNCTI ON_PO NTER(r et urnType, name), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which
is a pointer to a Cryptoki API function in a Cryptoki libranyet ur nType is the return

type of the function, andane is its name. It can be used in either of the following
fashions to define a function pointer variabig,C |1 ni ti al i ze, which can point to a
C_Initialize function in a Cryptoki library (note that neither of the following code
shippets actuallgssigns a value tawyC I niti al i ze):

Copyright © 1994-1999 RSA Laboratories

Page 35

CK_DECLARE_FUNCTI ON_PO NTER(CK_RV, nyC Initialize)(
CK_ VA D PTR pReserved
);

or:

t ypedef CK_DECLARE_FUNCTI ON_PO NTER(CK_RYV,
nyC InitializeType) (
CK_VA D _PTR pReserved

)
nyC lnitializeType nyClnitialize;

¢ CK_CALLBACK_FUNCTION

CK_CALLBACK_FUNCTI ON(r et ur nType, nane), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which
is a pointer to an application callback function that can be used by a Cryptoki API
function in a Cryptoki library. ret urnType is the return type of the function, and
nane isits name. It can be used in either of the following fashions to define a function
pointer variable, my Cal | back, which can point to an application callback which takes
arguments ar gs and returns a CK_RV (note that neither of the following code snippets
actually assignsavalueto myCal | back):

CK_CALLBACK_FUNCTI ON(CK_RV, nyCal | back) (args);

or:
t ypedef CK_CALLBACK FUNCTI ON(CK_RV,
nmyCal | backType) (ar gs);
nyCal | backType nyCal | back;
¢ NULL PTR

NULL_PTR s the value of a NULL pointer. In any ANSI C environment—and in many
others as well-NULL_PTR should be defined simply as 0.

8.3 Sample platform- and compiler-dependent code

8.3.1 Win32

Developers using Microsoft Developer Studio 5.0 to produce C or C++ code which
implements or makes use of a Win32 Cryptoki .dIl might issue the following directives
before including any Cryptoki header files:

#pragma pack(push, cryptoki, 1)

#define CK_PTR *

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 36

#define CK_DEFI NE_FUNCTI ON(returnType, nane) \
returnType _ decl spec(dl | export) name

#defi ne CK_DECLARE_FUNCTI ON(returnType, nane) \
returnType _ decl spec(dllinport) name

#defi ne CK_DECLARE_FUNCTI ON_PO NTER(returnType, nane) \
returnType __ decl spec(dllinport) (* nane)

#defi ne CK_CALLBACK FUNCTI ON(returnType, nane) \
returnType (* nane)

#i f ndef NULL_PTR
#define NULL_PTR O
#endi f

After including any Cryptoki header files, they might issue the following directives to
reset the structure packing to its earlier value:

#pragma pack(pop, cryptoki)
8.3.2 Winl6

Developers using a pre-5.0 version of Microsoft Developer Studio to produce C or C++
code which implements or makes use of a Win16 Cryptoki .dll might issue the following
directives before including any Cryptoki header files:

#pragma pack(1)
#define CK_PTR far *

#defi ne CK_DEFI NE_FUNCTI ON(returnType, nane) \
returnType _ _export _far _pascal nane

#defi ne CK_DECLARE_FUNCTI ON(returnType, nane) \
returnType _ _export _far _pascal nane

#defi ne CK_DECLARE_FUNCTI ON_PO NTER(r et urnType, nane) \
returnType __export _far _pascal (* nane)

#define CK_CALLBACK FUNCTI ON(returnType, nane) \
returnType _far _pascal (* nane)

#i f ndef NULL_PTR

#define NULL_PTR O
#endi f

Copyright © 1994-1999 RSA Laboratories

Page 37

8.3.3 Generic UNIX

Developers performing generic UNIX development might issue the following directives
before including any Cryptoki header files:

#define CK_PTR *

#defi ne CK_DEFI NE_FUNCTI ON(returnType, nane) \
returnType nane

#defi ne CK_DECLARE_FUNCTI ON(ret urnType, nane) \
returnType nane

#defi ne CK_DECLARE_FUNCTI ON_PO NTER(r et urnType, nane) \
returnType (* nane)

#define CK_CALLBACK FUNCTI ON(returnType, nane) \
returnType (* nane)

#i f ndef NULL_PTR

#define NULL_PTR O
#endi f

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 38

9. General datatypes

The genera Cryptoki data types are described in the following subsections. The data
types for holding parameters for various mechanisms, and the pointers to those
parameters, are not described here; these types are described with the information on the
mechanisms themselves, in Section 11.17.2.

A C or C++ source file in a Cryptoki application or library can define al these types (the
types described here and the types that are specifically used for particular mechanism
parameters) by including the top-level Cryptoki include file, pkcs11. h. pkcs1l. h,in
turn, includes the other Cryptoki include files, pkcs11t . h and pkcs11f. h. A source
filecan aso include just pkcs11t . h (instead of pkcs11. h); this defines most (but not
all) of the types specified here.

When including either of these header files, a source file must specify the preprocessor
directivesindicated in Section 8.

9.1 General information

Cryptoki represents general information with the following types:

¢+ CK_VERSION; CK_VERSION_PTR

CK_VERSION is a structure that describes the version of a Cryptoki interface, a
Cryptoki library, or an SSL implementation, or the hardware or firmware version of a slot
or token. Itisdefined asfollows:

typedef struct CK _VERSI ON {
CK_BYTE mmj or;

CK_BYTE m nor;
} CK _VERSI ON,

The fields of the structure have the following meanings:

maj or major version number (the integer portion of the
version)

minor minor version number (the hundredths portion of the
version)

For version 1.0, major = 1 and minor = 0. For version 2.1, major = 2 and minor = 10.
Minor revisions of the Cryptoki standard are always upwardly compatible within the
same major version number.

CK_VERSION_PTR isapointer to aCK_VERSION.

Copyright © 1994-1999 RSA Laboratories

¢ CK_INFO; CK_INFO_PTR

Page 39

CK_INFO provides general information about Cryptoki. It isdefined as follows:

t ypedef struct CK | NFO {
CK_VERSI ON cr ypt oki Ver si on;
CK_UTF8CHAR manuf act urer| D 32] ; |

CK_FLAGS fl ags;

CK_UTF8CHAR | i braryDescription[32]; |
CK_VERSI ON | i braryVersi on;

} CK_I NFQ

The fields of the structure have the following meanings:

cryptokiVersion

manufacturer D

flags

libraryDescription

libraryVersion

Cryptoki interface version number, for compatibility
with future revisions of thisinterface

ID of the Cryptoki library manufacturer. Must be
padded with the blank character (* *). Shooai be
null-terminated.

bit flags reserved for future versions. Must be zero for
this version

character-string description of the library. Must be
padded with the blank character (* *). Shooad be
null-terminated.

Cryptoki library version number

For libraries written to this document, the valuemyfptokiVersion should be2-64.1; the \
value oflibraryVersion is the version number of the library software itself.

CK_INFO_PTR is a pointer to &K _INFO.

¢ CK_NOTIFICATION

CK_NOTIFICATION holds the types of notifications that Cryptoki provides to an
application. It is defined as follows:

typedef CK_ULONG CK_NOTI FI CATI ON;

For this version of Cryptoki, the following types of notifications are defined:

#def i ne CKN_SURRENDER 0

The notifications have the following meanings:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 40

CKN_SURRENDER Cryptoki is surrendering the execution of afunction
executing in a session so that the application may
perform other operations. After performing any
desired operations, the application should indicate to
Cryptoki whether to continue or cancel the function
(see Section 11.17.1).

9.2 Slot and token types

Cryptoki represents slot and token information with the following types:

¢ CK_SLOT_ID; CK_SLOT_ID_PTR

CK_SLOT_ID is a Cryptoki-assigned value that identifies a dot. It is defined as
follows:

t ypedef CK _ULONG CK SLOT I D;

A list of CK_SLOT IDs is returned by C_GetSlotList. A priori, any vaue of
CK_SLOT_ID can be a valid slot identifier—in particular, a system may have a slot
identified by the value 0. It need not have such a slot, however.

CK_SLOT_ID_PTR is a pointer to £K_SLOT _ID.

¢ CK_SLOT_INFO; CK_SLOT_INFO_PTR

CK_SLOT_INFO provides information about a slot. It is defined as follows:

typedef struct CK SLOT_I NFO {
CK_UTF8CHAR sl ot Descri ption[64] ;
CK_UTF8CHAR manuf acturer| D[32] ;
CK_FLAGS fl ags;
CK_VERSI ON har dwar eVer si on;
CK_VERSI ON firmnar eVer si on;

} CK_SLOT_I NFQ,

The fields of the structure have the following meanings:

slotDescription character-string description of the slot. Must be
padded with the blank character (* *). Shooad be
null-terminated.

manufacturer|D ID of the slot manufacturer. Must be padded with the
blank character (*). Shouldot be null-terminated.

Copyright © 1994-1999 RSA Laboratories

Page 41

flags bitsflagsthat provide capabilities of theslot. The
flags are defined below
hardwareVersion version number of the slot’s hardware

firmwareVersion version number of the slot’s firmware

The following table defines théags field:

Table9, Slot Information Flags

Bit Flag Mask Meaning
CKF_TOKEN_PRESENT 0x00000001| TRUE if a token is present in the slof
(e.g., a device is in the reader)

CKF_REMOVABLE_DEVICE | 0x00000002| TRUE if the reader supports
removable devices
CKF_HW_SLOT 0x00000004| TRUE if the slot is a hardware slot, g4s
opposed to a software slot
implementing a “soft token”

For a given slot, the value of t@&KF_REMOVABLE_DEVICE flag never changes.

In addition, if this flag is not set for a given slot, then @leF_TOKEN_PRESENT

flag for that slot isalways set. That is, if a slot does not support a removable device, then
that slot always has a token in it.

CK_SLOT_INFO_PTR is a pointer to £K_SLOT_INFO.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 42

¢ CK_TOKEN_INFO; CK_TOKEN_INFO_PTR

CK_TOKEN_INFO providesinformation about atoken. It isdefined asfollows:
t ypedef struct CK _TOKEN I NFO {

CK_UTF8CHAR | abel [32] ;
CK_UTF8CHAR manuf acturerl D 32];
CK_UTF8CHAR nodel [16] ;

CK_CHAR seri al Nunber [16];

CK_FLAGS
CK_ULONG
CK_ULONG
CK_ULONG
CK_ULONG
CK_ULONG
CK_ULONG
CK_ULONG
CK_ULONG
CK_ULONG
CK_ULONG

fl ags;

ul MaxSessi onCount ;

ul Sessi onCount ;

ul MaxRwSessi onCount ;
ul RwSessi onCount ;

ul MaxPi nLen;

ul M nPi nLen;

ul Tot al Publ i cMenory;
ul FreePubl i cMenory;
ul Tot al Pri vat eMenory;
ul FreePri vat eMenory;

CK_VERSI ON har dwar eVer si on;
CK_VERSI ON fi r mnar eVer si on;
CK_CHAR ut cTi e[16] ;

} CK_TOKEN_ I NFQ,

Thefields of the structure have the following meanings:

label application-defined label, assigned during token
initialization. Must be padded with the blank character

(*9). Shouldnot be null-terminated.

manufacturer|D ID of the device manufacturer. Must be padded with
the blank character (* *). Shoutwt be null-

terminated.

model model of the device. Must be padded with the blank

character (*). Shouldot be null-terminated.

serial Number character-string serial number of the device. Must be
padded with the blank character (* *). Shooad be

null-terminated.

flags bit flags indicating capabilities and status of the device

as defined below

ulMaxSessionCount maximum number of sessions that can be opened with
the token at one time by a single application (see note

below)

Copyright © 1994-1999 RSA Laboratories

ul SessionCount

ulMaxRwSessionCount

ulRwSessionCount

ulMaxPinLen
ulMinPinLen

ul Total PublicMemory

ulFreePublicMemory

ul Total PrivateMemory

ulFreePrivateMemory

hardwareVersion
firmwareVersion

utcTime

Page 43
number of sessions that this application currently has
open with the token (see note below)

maximum number of read/write sessions that can be
opened with the token at one time by asingle
application (see note below)

number of read/write sessions that this application
currently has open with the token (see note below)

maximum length in bytes of the PIN
minimum length in bytes of the PIN

the total amount of memory on the token in bytesin
which public objects may be stored (see note below)

the amount of free (unused) memory on the token in
bytes for public objects (see note below)

the total amount of memory on the token in bytesin
which private objects may be stored (see note below)

the amount of free (unused) memory on the token in
bytes for private objects (see note below)

version number of hardware
version number of firmware

current time as a character-string of length 16,
represented in the format YYYYMMDDhhmmssxx (4
charactersfor the year; 2 characters each for the
month, the day, the hour, the minute, and the second;

and 2 additional reserved ‘0’ characters). The value of
this field only makes sense for tokens equipped with a
clock, as indicated in the token information flags (see
Table 10Fabld0Fable10)

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The following table defines the flags field:

Table 10, Token Information Flags

Bit Flag

Mask

Meaning

CKF_RNG

0x00000001

TRUE if the token
hasits own
random number
generator

CKF_WRITE_PROTECTED

0x00000002

TRUE if the token
iswrite-protected
(see below)

CKF_LOGIN_REQUIRED

0x00000004

TRUE if there are
some
cryptographic
functions that a
user must be
logged in to
perform

CKF_USER_PIN_INITIALIZED

0x00000008

TRUE if the
normal user’s PIN
has been initialize

CKF_RESTORE_KEY NOT_NEEDED

0x00000020

TRUE if a
successful save of
a session’s
cryptographic
operations state
always contains all
keys needed to
restore the state o
the session

CKF_CLOCK_ON_TOKEN

0x00000040

TRUE if token has
its own hardware
clock

CKF_PROTECTED_AUTHENTICATION_PATH

0x00000100

TRUE if token has
a “protected
authentication
path”, whereby a
user can log into
the token without
passing a PIN
through the
Cryptoki library

CKF_DUAL_CRYPTO_ OPERATIONS

0x00000200

TRUE if a single

Copyright © 1994-1999 RSA Laboratories

Page 45

Bit Flag Mask Meaning

session with the
token can perform
dual cryptographic
operations (see
Section 11.13)

CKF TOKEN INITIALIZED 0x00000400 | TRUE if the token
has been initialized

using
C InitializeToken

or an equivalent
mechanism outside
the scope of this
standard. Calling
C InitializeToken
when thisflagis
set will cause the
token to be
reinitialized.

CKF _SECONDARY_AUTHENTICATION 0x00000800 | TRUE if the token
supports secondary
authentication for

private key
objects.

Exactly what the CKF_WRITE_PROTECTED flag means is not specified in Cryptoki.
An application may be unable to perform certain actions on a write-protected token; these
actions can include any of the following, among others:

» Creating/modifying/del eting any object on the token.
* Creating/modifying/deleting a token object on the token.
* Changing the SO’s PIN.

» Changing the normal user’s PIN.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 46

Note: The fields ulMaxSessionCount, ulSessionCount, ulMaxRwSessionCount,
ulRwSessionCount, ul Total PublicMemory, ulFreePublicMemory, ul Total PrivateMemory,

and ulFreePrivateMemory can have the Specia value
CK_UNAVAILABLE_INFORMATION, which means that the token and/or library is
unable or unwilling to provide that information. In addition, the fields

ulMaxSessionCount and ulMaxRwSessionCount can have the specid vaue
CK_EFFECTIVELY _INFINITE, which means that there is no practica limit on the
number of sessions (resp. R/W sessions) an application can have open with the token.

These values are defined as

#def i ne CK_UNAVAI LABLE | NFORMVATI ON (~0UL)
#def i ne CK_EFFECTI VELY_I NFI NI TE 0

It is important to check these fields for these specia values. This is particularly true for
CK_EFFECTIVELY _INFINITE, since an application seeing this value in the
ulMaxSessionCount or ulMaxRwSessionCount field would otherwise conclude that it
can’t operany sessions with the token, which is far from being the case.

The upshot of all this is that the correct way to interpret (for example) the
ulMaxSessionCount field is something along the lines of the following:

CK_TOKEN_I NFO i nf o;

if ((OK_LONG info.ul MaxSessi onCount
== CK_UNAVAI LABLE | NFORVATI ON) {
/| * Token refuses to give value of ul MaxSessionCount */

} else i f (info.ul MaxSessi onCount ==
CK_EFFECTI VELY_INFINITE) {
/* Application can open as nmany sessions as it wants */

} else {
/ * ul MaxSessi onCount really does contain what it should
*/

}

CK_TOKEN_INFO_PTR is a pointer to £K_TOKEN_INFO.

Copyright © 1994-1999 RSA Laboratories

Page 47

9.3 Session types

Cryptoki represents session information with the following types:

¢ CK_SESSION_HANDLE; CK_SESSION_HANDLE_PTR

CK_SESSION_HANDLE is a Cryptoki-assigned value that identifies a session. It is
defined as follows:

typedef CK_ULONG CK_SESSI ON_HANDLE;

Valid session handles in Cryptoki always have nonzero values. For developers’
convenience, Cryptoki defines the following symbolic value:

#defi ne CK_I NVALI D_HANDLE 0

CK_SESSION_HANDLE_PTR is a pointer to £K_SESSION_HANDLE.

¢ CK_USER_TYPE

CK_USER_TYPE holds the types of Cryptoki users described in Section 6.4. It is
defined as follows:

typedef CK _ULONG CK_USER_TYPE;

For this version of Cryptoki, the following types of users are defined:

#define CKU SO 0
#defi ne CKU USER 1

¢ CK_STATE

CK_STATE holds the session state, as described in Sections 6.6.1 and 6.6.2. It is defined
as follows:

t ypedef CK _ULONG CK_STATE;

For this version of Cryptoki, the following session states are defined:

#defi ne CKS_RO PUBLI C_SESSI ON 0
#defi ne CKS_RO_USER _FUNCTI ONS 1
#defi ne CKS_RW PUBLI C_SESSI ON 2
#defi ne CKS_RW USER_FUNCTI ONS 3
#defi ne CKS_RW SO FUNCTIONS 4

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 48

¢ CK_SESSION_INFO; CK_SESSION_INFO_PTR

CK_SESSION_INFO providesinformation about a session. It is defined as follows:
t ypedef struct CK_SESSI ON I NFO {
CK SLOT_I D slotlD
CK_STATE st at e;
CK_FLAGS fl ags;

CK_ULONG ul Devi ceError;
} CK_SESSI ON_I NFQ,

Thefields of the structure have the following meanings:
dotID ID of the dot that interfaces with the token
state the state of the session

flags hit flags that define the type of session; the flags are
defined below

ulDeviceError an error code defined by the cryptographic device.
Used for errors not covered by Cryptoki.

The following table defines the flags field:

Table 113111, Session Information Flags

Bit Flag Mask Meaning

CKF_RW_SESSION 0x00000002 | TRUE if the session is read/write; FALSE
if the session isread-only

CKF_SERIAL_SESSION | 0x00000004 | Thisflagis provided for backward
compatibility, and should always be set to
TRUE

CK_SESSION_INFO_PTR isapointer to aCK_SESSION_INFO.

9.4 Object types

Cryptoki represents object information with the following types:

¢+ CK_OBJECT HANDLE; CK_OBJECT HANDLE_PTR

CK_OBJECT_HANDLE is a token-specific identifier for an object. It is defined as
follows:

Copyright © 1994-1999 RSA Laboratories

Page 49

typedef CK _ULONG CK_OBJECT_HANDLE;

When an object is created or found on a token by an application, Cryptoki assigns it an

object handle for that application’s sessions to use to access it. A particular object on a
token does not necessarily have a handle which is fixed for the lifetime of the object;
however, if a particular session can use a particular handle to access a particular object,
then that session will continue to be able to use that handle to access that object as long as
the session continues to exist, the object continues to exist, and the object continues to be
accessible to the session.

Valid object handles in Cryptoki always have nonzero values. For developers’
convenience, Cryptoki defines the following symbolic value:

#define CK_| NVALI D_HANDLE 0

CK_OBJECT_HANDLE_PTR is a pointer to £K_OBJECT_HANDLE.

¢ CK_OBJECT_CLASS;, CK_OBJECT_CLASS PTR

CK_OBJECT_CLASS is a value that identifies the classes (or types) of objects that
Cryptoki recognizes. It is defined as follows:

t ypedef CK_ULONG CK_OBJECT CLASS:

For this version of Cryptoki, the following classes of objects are defined:

#defi ne CKO_DATA 0x00000000
#def i ne CKO_CERTI FI CATE 0x00000001
#defi ne CKO_PUBLI C_KEY 0x00000002
#defi ne CKO PRI VATE_KEY 0x00000003
#defi ne CKO_SECRET_KEY 0x00000004
#def i ne CKO HW FEATURE 0x00000005

#defi ne CKO_VENDOR _DEFI NED 0x80000000
Object classeKO_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their object classes through
the PKCS process.

CK_OBJECT_CLASS PTR is a pointer to £K_OBJECT_CLASS.

¢ CK HW FEATURE TYPE

CK HW FEATURE TYPE is a value that identifies a hardware feature type qof a
device. It is defined as follows:

t ypedef CK_ULONG CK_HW FEATURE TYPE;

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 50

For this version of Cryptoki, the following hardware feature types are defined:

#defi ne CKH_MONOTONI C_ COUNTER 0x00000001
#defi ne CKH_CLOCK 0x00000002
#defi ne CKH_VENDCR_DEFI NED 0x80000000

Feature types CKH VENDOR DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their feature types through
the PKCS process.

¢+ CK_KEY_TYPE

CK_KEY_TYPE isavauethat identifies akey type. It is defined as follows:
t ypedef CK _ULONG CK_KEY_TYPE;

For this version of Cryptoki, the following key types are defined:

#def i ne CKK_RSA 0x00000000
#defi ne CKK_DSA 0x00000001
#def i ne CKK_DH 0x00000002
#defi ne CKK_ECDSA 0x00000003
#def i ne CKK_KEA 0x00000005
#def i ne CKK_GENERI C_SECRET 0x00000010
#def i ne CKK_RC2 0x00000011
#defi ne CKK_RC4 0x00000012
#def i ne CKK_DES 0x00000013
#defi ne CKK _DES2 0x00000014
#def i ne CKK_DES3 0x00000015
#def i ne CKK_CAST 0x00000016
#def i ne CKK_CAST3 0x00000017
#def i ne CKK_CAST5 0x00000018
#def i ne CKK_CAST128 0x00000018
#defi ne CKK_RC5 0x00000019
#def i ne CKK_I DEA 0x0000001A
#defi ne CKK_SKI PJACK 0x0000001B
#def i ne CKK_BATON 0x0000001C
#defi ne CKK_JUNI PER 0x0000001D
#def i ne CKK_CDMF 0x0000001E

#def i ne CKK_VENDOR _DEFI NED 0x80000000
Key types CKK_VENDOR_DEFINED and above are permanently reserved for token

vendors. For interoperability, vendors should register their key types through the PKCS
process.

Copyright © 1994-1999 RSA Laboratories

Page 51

¢ CK_CERTIFICATE_TYPE

CK_CERTIFICATE_TYPE is avalue that identifies a certificate type. It is defined as
follows:

t ypedef CK_ULONG CK_CERTI FI CATE_TYPE;

For this version of Cryptoki, the following certificate types are defined:

#defi ne CKC_X 509 0x00000000
#define CKC_X 509_ATTR_CERT 0x00000001
#defi ne CKC_VENDCR_DEFI NED 0x80000000

Certificate types CKC_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their certificate types through
the PKCS process.

¢ CK_ATTRIBUTE_TYPE

CK_ATTRIBUTE_TYPE is a value that identifies an attribute type. It is defined as
follows:

typedef CK_ULONG CK_ATTRI BUTE_TYPE;

For this version of Cryptoki, the following attribute types are defined:

#def i ne CKA_CLASS 0x00000000
#def i ne CKA_TOKEN 0x00000001
#defi ne CKA PRI VATE 0x00000002
#defi ne CKA_LABEL 0x00000003
#defi ne CKA_APPLI CATI ON 0x00000010
#def i ne CKA VALUE 0x00000011
#defi ne CKA OBJECT ID 0x00000012
#def i ne CKA_CERTI FI CATE_TYPE 0x00000080
#defi ne CKA | SSUER 0x00000081
#def i ne CKA_SERI AL_NUMBER 0x00000082
#defi ne CKA AC | SSUER 0x00000083 |
#def i ne CKA_ OMNNER 0x00000084 |
#defi ne CKA _KEY_TYPE 0x00000100
#def i ne CKA_SUBJECT 0x00000101
#define CKA ID 0x00000102
#def i ne CKA_SENSI Tl VE 0x00000103
#defi ne CKA_ENCRYPT 0x00000104
#def i ne CKA_DECRYPT 0x00000105
#defi ne CKA WRAP 0x00000106
#def i ne CKA_UNWRAP 0x00000107
#defi ne CKA_SI GN 0x00000108
#def i ne CKA_SI GN_RECOVER 0x00000109

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 52

#defi ne CKA VERI FY 0Ox0000010A
#def i ne CKA_VERI FY_RECOVER 0x0000010B
#defi ne CKA DERI VE 0x0000010C
#def i ne CKA_START_DATE 0x00000110
#defi ne CKA_END DATE 0x00000111
#def i ne CKA_MODULUS 0x00000120
#def i ne CKA_MODULUS BI TS 0x00000121

#defi ne CKA_PUBLI C_EXPONENT 0x00000122
#defi ne CKA_PRI VATE_EXPONENT 0x00000123

#define CKA PRI MVE_1 0x00000124
#defi ne CKA PRI MVE 2 0x00000125
#defi ne CKA EXPONENT 1 0x00000126
#defi ne CKA EXPONENT_2 0x00000127
#defi ne CKA COEFFI Cl ENT 0x00000128
#defi ne CKA PRI MVE 0x00000130
#defi ne CKA_SUBPRI ME 0x00000131
#defi ne CKA BASE 0x00000132
#define CKA VALUE BI TS 0x00000160
#defi ne CKA VALUE LEN 0x00000161
#defi ne CKA EXTRACTABLE 0x00000162
#defi ne CKA _LOCAL 0x00000163

#def i ne CKA_NEVER_EXTRACTABLE 0x00000164
#defi ne CKA_ ALWAYS SENSI TIVE 0x00000165

#defi ne CKA_MODI FI ABLE 0x00000170
#defi ne CKA ECDSA PARAVS 0x00000180
#defi ne CKA_EC POl NT 0x00000181
#def i ne CKA SECONDARY AUTH 0x00000200
#defi ne CKA USAGE_COUNT 0x00000201
#define CKA_OBJECT LOCKED 0x00000202
#defi ne CKA AUTH ATTEMPTS 0x00000203
#defi ne CKA HW FEATURE TYPE __ 0x00000300
#define CKA RESET ON INIT 0x00000301
#defi ne CKA HAS RESET 0x00000302
#defi ne CKA_VENDOR DEFI NED 0x80000000

Section 9.7 defines the attributes for each object class. Attribute types
CKA_VENDOR_DEFINED and above are permanently reserved for token vendors.
For interoperability, vendors should register their attribute types through the PKCS
process.

¢ CK_ATTRIBUTE; CK_ATTRIBUTE_PTR

CK_ATTRIBUTE is astructure that includes the type, value, and length of an attribute.
It is defined as follows:

Copyright © 1994-1999 RSA Laboratories

Page 53

typedef struct CK_ATTRI BUTE {
CK_ATTRI BUTE_TYPE type;
CK_VA D_PTR pVal ue;
CK_ULONG ul Val uelLen;

} CK_ATTRI BUTE;

Thefields of the structure have the following meanings:
type the attribute type
pValue pointer to the value of the attribute
ulValueLen lengthin bytes of the value

If an attribute has no value, then ulVValueLen = 0, and the value of pValueisirrelevant. An

array of CK_ATTRIBUTEsS is called a “template” and is used for creating, manipulating
and searching for objects. The order of the attributes in a tenmplatematters, even if

the template contains vendor-specific attributes. Notep¥alue is a “void” pointer,
facilitating the passing of arbitrary values. Both the application and Cryptoki library must
ensure that the pointer can be safely cast to the expectediigpenithout word-
alignment errors).

CK_ATTRIBUTE_PTR is a pointer to £K_ATTRIBUTE.

¢+ CK_DATE

CK_DATE is a structure that defines a date. It is defined as follows:
t ypedef struct CK DATE {
CK_CHAR year|[4];
CK_CHAR nont h[2] ;
CK_CHAR day|[2] ;
} CK_DATE;
The fields of the structure have the following meanings:
year the year (“1900” - “9999”)
month the month (“01” - “12”)
day the day (“01”-*“31")

The fields hold numeric characters from the character set in Table e 3, not |
the literal byte values.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 54

9.5 Datatypesfor mechanisms

Cryptoki supports the following types for describing mechanisms and parameters to them:

¢ CK_MECHANISM_TYPE; CK_MECHANISM_TYPE_PTR

CK_MECHANISM_TYPE is avalue that identifies a mechanism type. It is defined as
follows:

t ypedef CK_ULONG CK_MECHANI SM TYPE;

For Cryptoki Version 2012.1, the following mechanism types are defined:

#defi ne CKM RSA PKCS KEY_PAI R_GEN 0x00000000
#defi ne CKM_RSA PKCS 0x00000001
#defi ne CKM RSA 9796 0x00000002
#defi ne CKM_RSA X 509 0x00000003
#defi ne CKM MD2_RSA PKCS 0x00000004
#defi ne CKM_MD5_RSA PKCS 0x00000005
#defi ne CKM SHA1 RSA PKCS 0x00000006
#defi ne CKM RI PEMD128 RSA PKCS 0x00000007
#defi ne CKM Rl PEMD160 RSA PKCS 0x00000008
#defi ne CKM DSA KEY_PAI R_CGEN 0x00000010
#defi ne CKM DSA 0x00000011
#defi ne CKM DSA SHAl 0x00000012
#defi ne CKM DH PKCS_KEY_PAI R_CGEN 0x00000020
#defi ne CKM DH_PKCS_DERI VE 0x00000021
#defi ne CKM RC2_KEY_GEN 0x00000100
#defi ne CKM RC2_ECB 0x00000101
#define CKM RC2_CBC 0x00000102
#defi ne CKM RC2_NMAC 0x00000103
#defi ne CKM RC2_MAC GENERAL 0x00000104
#defi ne CKM RC2_CBC_PAD 0x00000105
#defi ne CKM RC4_KEY_GEN 0x00000110
#defi ne CKM RC4 0x00000111
#defi ne CKM DES KEY_GEN 0x00000120
#defi ne CKM DES ECB 0x00000121
#define CKM DES CBC 0x00000122
#defi ne CKM DES MAC 0x00000123
#defi ne CKM DES MAC GENERAL 0x00000124
#defi ne CKM DES_CBC_PAD 0x00000125
#defi ne CKM DES2_KEY_ GEN 0x00000130
#defi ne CKM DES3_KEY_GEN 0x00000131
#defi ne CKM DES3_ECB 0x00000132
#defi ne CKM DES3_CBC 0x00000133
#defi ne CKM DES3_MAC 0x00000134
#defi ne CKM DES3_MAC GENERAL 0x00000135
#defi ne CKM DES3_CBC_PAD 0x00000136
#defi ne CKM CDMF_KEY_GEN 0x00000140

Copyright © 1994-1999 RSA Laboratories

#defi ne CKM _CDVF_ECB 0x00000141
#defi ne CKM CDM-_CBC 0x00000142
#defi ne CKM _CDVF_NMAC 0x00000143
#defi ne CKM CDMF_MAC GENERAL 0x00000144
#defi ne CKM _CDWVF_CBC PAD 0x00000145
#defi ne CKM MD2 0x00000200
#defi ne CKM _MD2_ HVAC 0x00000201
#defi ne CKM MD2_HVAC GENERAL 0x00000202
#defi ne CKM _ND5 0x00000210
#defi ne CKM NMD5_HVAC 0x00000211
#defi ne CKM MD5 HMAC GENERAL 0x00000212
#define CKM SHA 1 0x00000220
#define CKM SHA 1 HVAC 0x00000221
#define CKM SHA 1 HVAC GENERAL 0x00000222
#defi ne CKM Rl PEMD128 0x00000230
#defi ne CKM RI PEMD128 HVAC 0x00000231
#defi ne CKM Rl PEMD128 HMAC GENERAL 0x00000232
#defi ne CKM RI PEMD160 0x00000240
#defi ne CKM Rl PEMD160 HVAC 0x00000241
#defi ne CKM Rl PEMD160 HVMAC GENERAL 0x00000242
#defi ne CKM _CAST_KEY_ GEN 0x00000300
#defi ne CKM CAST_ECB 0x00000301
#defi ne CKM CAST_CBC 0x00000302
#defi ne CKM CAST_MAC 0x00000303
#defi ne CKM CAST_ MAC GENERAL 0x00000304
#defi ne CKM CAST_CBC_PAD 0x00000305
#defi ne CKM CAST3_KEY_ CEN 0x00000310
#defi ne CKM CAST3_ECB 0x00000311
#defi ne CKM CAST3_CBC 0x00000312
#defi ne CKM CAST3_NMAC 0x00000313
#defi ne CKM CAST3_NMAC GENERAL 0x00000314
#defi ne CKM CAST3_CBC PAD 0x00000315
#defi ne CKM CAST5 KEY CGEN 0x00000320
#defi ne CKM CAST128 KEY_GEN 0x00000320
#defi ne CKM CAST5_ECB 0x00000321
#defi ne CKM CAST128 ECB 0x00000321
#defi ne CKM CAST5_CBC 0x00000322
#defi ne CKM CAST128 CBC 0x00000322
#defi ne CKM CAST5_NMAC 0x00000323
#defi ne CKM CAST128 NMAC 0x00000323
#defi ne CKM CAST5 NMAC GENERAL 0x00000324
#defi ne CKM CAST128 MAC GENERAL 0x00000324
#defi ne CKM CAST5_CBC _PAD 0x00000325
#defi ne CKM CAST128 CBC PAD 0x00000325
#defi ne CKM RC5_KEY_ GEN 0x00000330
#defi ne CKM RC5_ECB 0x00000331
#define CKM RC5_CBC 0x00000332
#defi ne CKM RC5_MAC 0x00000333
#defi ne CKM RC5_ MAC GENERAL 0x00000334
#defi ne CKM RC5_CBC PAD 0x00000335

Page 55

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CKM | DEA KEY_GEN

CKM_| DEA_ECB

CKM_| DEA_CBC

CKM_| DEA_MAC

CKM_| DEA_MAC_GENERAL

CKM_| DEA_CBC_PAD
CKM_GENERI C_SECRET_KEY_GEN

CKM_CONCATENATE_BASE_AND_KEY
CKM_CONCATENATE_BASE_AND_DATA
CKM_CONCATENATE_DATA_AND_BASE

CKM_XOR BASE_AND DATA
CKM_EXTRACT_KEY_FROM KEY
CKM SSL3_PRE_MASTER KEY GEN
CKM_SSL3_MASTER KEY_DERI VE
CKM_SSL3_KEY_AND MAC DERI VE
CKM_SSL3_MD5_MAC
CKM_SSL3_SHAL_MAC
CKM_MVD5_KEY_DERI VATI ON
CKM_VD2_KEY_DERI VATI ON
CKM_SHAL_KEY_DERI VATI ON
CKM_PBE_MD2_DES_CBC
CKM_PBE_MD5_DES_CBC
CKM_PBE_MD5_CAST_CBC
CKM_PBE_MD5_CAST3_CBC
CKM_PBE_MD5_CAST5_CBC
CKM_PBE_MD5_CAST128_CBC
CKM_PBE_SHAL CAST5_CBC
CKM_PBE_SHA1_CAST128_CBC
CKM_PBE_SHA1_RC4_128
CKM_PBE_SHA1_RC4_40
CKM_PBE_SHA1_DES3_EDE CBC
CKM_PBE_SHA1_DES2_EDE_CBC
CKM_PBE_SHA1_RC2_ 128 CBC
CKM_PBE_SHA1_RC2_40_CBC
CKM_PBA_SHA1_W TH_SHAL HVAC
CKM_KEY_WRAP_LYNKS

CKM_KEY WRAP_SET_QAEP
CKM_SKI PJACK_KEY_GEN

CKM_SKI PJACK_ECB64

CKM_SKI PJACK_CBC64

CKM_SKI PJACK_OFB64

CKM_SKI PJACK_CFB64

CKM_SKI PJACK_CFB32

CKM_SKI PJACK_CFB16

CKM_SKI PJACK_CFB8

CKM_SKI PJACK_V\RAP

CKM_SKI PJACK_PRI VATE_\W\RAP
CKM_SKI PJACK_RELAYX

CKM_KEA KEY_PAI R_GEN
CKM_KEA_KEY_DERI VE

Copyright © 1994-1999 RSA Laboratories

0x00000340
0x00000341
0x00000342
0x00000343
0x00000344
0x00000345
0x00000350
0x00000360
0x00000362
0x00000363
0x00000364
0x00000365
0x00000370
0x00000371
0x00000372
0x00000380
0x00000381
0x00000390
0x00000391
0x00000392
0x000003A0
0x000003A1
0x000003A2
0x000003A3
0x000003A4
0x000003A4
0x000003A5
0x000003A5
0x000003A6
0Ox000003A7
0x000003A8
0x000003A9
0x000003AA
0x000003AB
0x000003C0
0x00000400
0x00000401
0x00001000
0x00001001
0x00001002
0x00001003
0x00001004
0x00001005
0x00001006
0x00001007
0x00001008
0x00001009
0x0000100a
0x00001010
0x00001011

56

#defi ne CKM FORTEZZA Tl MESTAVP 0x00001020
#defi ne CKM BATON _KEY_ GEN 0x00001030
#defi ne CKM BATON _ECB128 0x00001031
#defi ne CKM BATON _ECB96 0x00001032
#defi ne CKM BATON _CBC128 0x00001033
#defi ne CKM BATON_COUNTER 0x00001034
#defi ne CKM BATON_SHUFFLE 0x00001035
#defi ne CKM BATON WRAP 0x00001036
#defi ne CKM ECDSA KEY_PAI R_GEN 0x00001040
#defi ne CKM ECDSA 0x00001041
#defi ne CKM ECDSA SHA1 0x00001042
#define CKM JUNI PER_KEY_GEN 0x00001060
#defi ne CKM_JUNI PER _ECB128 0x00001061
#defi ne CKM JUNI PER CBC128 0x00001062
#defi ne CKM_JUNI PER_COUNTER 0x00001063
#defi ne CKM JUNI PER_SHUFFLE 0x00001064
#defi ne CKM_JUNI PER_WRAP 0x00001065
#defi ne CKM FASTHASH 0x00001070
#defi ne CKM _ VENDOR_DEFI NED 0x80000000

Page 57

Mechanism types CKM_VENDOR_DEFINED and above are permanently reserved for
For interoperability, vendors should register their mechanism types
through the PKCS process.

token vendors.

CK_MECHANISM_TYPE_PTR isapointer toaCK_MECHANISM_TYPE.

¢ CK_MECHANISM; CK_MECHANISM_PTR

CK_MECHANISM is a dtructure that specifies a particular mechanism and any
parametersit requires. It is defined asfollows:

t ypedef struct CK_MECHANI SM {
CK_MECHANI SM TYPE nechani sm

CK_VO D_PTR pPar anet er ;
CK_ULONG ul Par anet er Len;
} CK_MECHANI SM

The fields of the structure have the following meanings:

mechanism thetype of mechanism
pParameter pointer to the parameter if required by the mechanism
ulParameterLen length in bytes of the parameter

Note that pParameter is a “void” pointer, facilitating the passing of arbitrary values.
Both the application and the Cryptoki library must ensure that the pointer can be safely
cast to the expected typee(, without word-alignment errors).

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 58

CK_MECHANISM_PTRisapointer toaCK_MECHANISM.

¢ CK_MECHANISM_INFO; CK_MECHANISM_INFO_PTR

CK_MECHANISM INFO is a structure that provides information about a particular
mechanism. It is defined as follows:

t ypedef struct CK_MECHANI SM I NFO {
CK_ULONG ul M nKeySi ze;
CK_ULONG ul MaxKeySi ze;
CK_FLAGS fl ags;

} CK_MECHANI SM | NFO,

The fields of the structure have the following meanings:

ulMinKeySze the minimum size of the key for the mechanism
(whether thisis measured in bitsor in bytesis
mechani sm-dependent)

ulMaxKeySze the maximum size of the key for the mechanism
(whether thisis measured in bitsor in bytesis
mechani sm-dependent)

flags hit flags specifying mechanism capabilities

For some mechanisms, the ulMinKeySze and ulMaxKeySze fields have meaningless
values.

The following table defines the flags field:

Copyright © 1994-1999 RSA Laboratories

Table 12, M echanism Information Flags

Page 59

Bit Flag Mask Meaning

CKF_HW 0x00000001 | TRUE if the mechanismis
performed by the device; FALSE if
the mechanism is performed in
software

CKF_ENCRYPT 0x00000100 | TRUE if the mechanism can be used
with C_Encryptlnit

CKF_DECRYPT 0x00000200 | TRUE if the mechanism can be used
with C_Decryptlnit

CKF_DIGEST 0x00000400 | TRUE if the mechanism can be used
with C_DigestInit

CKF_SIGN 0x00000800 | TRUE if the mechanism can be used
with C_Signlnit

CKF_SIGN_RECOVER 0x00001000 | TRUE if the mechanism can be used
with C_SignRecover | nit

CKF_VERIFY 0x00002000 | TRUE if the mechanism can be used
with C_Verifylnit

CKF_VERIFY_RECOVER 0x00004000 | TRUE if the mechanism can be used
with C_VerifyRecover I nit

CKF_GENERATE 0x00008000 | TRUE if the mechanism can be used
with C_GenerateK ey

CKF_GENERATE_KEY_PAIR | 0x00010000 | TRUE if the mechanism can be used
with C_GenerateK eyPair

CKF_WRAP 0x00020000 | TRUE if the mechanism can be used
with C_WrapKey

CKF_UNWRAP 0x00040000 | TRUE if the mechanism can be used
with C_UnwrapKey

CKF_DERIVE 0x00080000 | TRUE if the mechanism can be used
with C_DeriveKey

CKF_EXTENSION 0x80000000 | TRUE if thereis an extension to the

flags, FALSE if no extensions.
Must be FALSE for thisversion.

CK_MECHANISM_INFO_PTR isapointer to aCK_MECHANISM_INFO.

9.6 Function types

Cryptoki represents information about functions with the following data types:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢+ CK_RV

60

CK_RV isavaue that identifies the return value of a Cryptoki function. It is defined as

follows;

t ypedef CK _ULONG CK RV,

For this version of Cryptoki, the following return values are defined:

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CKR_OK
CKR_CANCEL

CKR_HOST_MEMORY

CKR_SLOT_I D_I NVALI D
CKR_GENERAL_ERROR

CKR_FUNCTI ON_FAI LED
CKR_ARGUMENTS_BAD
CKR_NO_EVENT
CKR_NEED_TO_CREATE_THREADS
CKR_CANT_LOCK

CKR_ATTRI BUTE_READ_ONLY
CKR_ATTRI BUTE_SENSI TI VE
CKR_ATTRI BUTE_TYPE_I NVALI D
CKR_ATTRI BUTE_VALUE_| NVALI D
CKR_DATA_| NVALI D
CKR_DATA_LEN_ RANGE

CKR_DEVI CE_ERROR

CKR_DEVI CE_MEMORY

CKR_DEVI CE_REMOVED
CKR_ENCRYPTED DATA | NVALI D
CKR_ENCRYPTED_DATA_LEN_RANGE
CKR_FUNCTI ON_CANCELED
CKR_FUNCTI ON_NOT_PARALLEL
CKR_FUNCTI ON_NOT_SUPPORTED
CKR_KEY_HANDLE_| NVALI D
CKR_KEY_S| ZE_ RANGE
CKR_KEY_TYPE_| NCONSI STENT
CKR_KEY_NOT_NEEDED
CKR_KEY_CHANGED

CKR_KEY NEEDED

CKR_KEY_I NDI GESTI BLE
CKR_KEY_FUNCTI ON_NOT_PERM TTED
CKR_KEY_NOT_WRAPPABLE
CKR_KEY_UNEXTRACTABLE
CKR_MECHANI SM | NVALI D
CKR_MECHANI SM_PARAM | NVALI D
CKR_OBJECT_HANDLE_| NVALI D
CKR_OPERATI ON_ACTI VE
CKR_OPERATI ON_NOT_I NI TI ALI ZED
CKR_PI N_| NCORRECT

CKR_PI N_I NVALI D

Copyright © 1994-1999 RSA Laboratories

0x00000000
0x00000001
0x00000002
0x00000003
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009
0x0000000A
0x00000010
0x00000011
0x00000012
0x00000013
0x00000020
0x00000021
0x00000030
0x00000031
0x00000032
0x00000040
0x00000041
0x00000050
0x00000051
0x00000054
0x00000060
0x00000062
0x00000063
0x00000064
0x00000065
0x00000066
0x00000067
0x00000068
0x00000069
0x0000006A
0x00000070
0x00000071
0x00000082
0x00000090
0x00000091
0x000000A0
O0x000000A1

Page 61

#def i ne CKR_PI N_LEN RANGE 0x000000A2
#defi ne CKR_PI N_EXPI RED 0x000000A3
#defi ne CKR_PI N_LOCKED 0x000000A4
#defi ne CKR_SESSI ON_CLOSED 0x000000B0
#def i ne CKR_SESSI ON_COUNT 0x000000B1
#defi ne CKR_SESSI ON_HANDLE | NVALI D 0x000000B3
#def i ne CKR_SESSI ON_PARALLEL_NOT_SUPPORTED 0x000000B4
#defi ne CKR_SESSI ON_READ ONLY 0x000000B5
#def i ne CKR_SESSI ON_EXI STS 0x000000B6
#defi ne CKR_SESSI ON_READ ONLY_EXI STS 0x000000B7
#def i ne CKR_SESSI ON_READ WRI TE_SO EXI STS 0x000000B8
#defi ne CKR_SI GNATURE_| NVALI D 0x000000C0
#def i ne CKR_SI GNATURE_LEN_ RANGE 0x000000C1
#defi ne CKR_TEMPLATE_I NCOVPLETE 0x000000D0
#def i ne CKR_TEMPLATE_I| NCONSI STENT 0x000000D1
#defi ne CKR_TOKEN_NOT_PRESENT 0x000000EOD
#defi ne CKR_TOKEN_NOT_RECOGNI ZED 0x000000E1
#defi ne CKR_TOKEN_WRI TE_PROTECTED 0x000000E2
#def i ne CKR_UNWRAPPI NG_KEY_HANDLE | NVALI D 0x000000F0
#defi ne CKR_UNWRAPPI NG_KEY_SI ZE_RANGCE 0x000000F1
#def i ne CKR_UNWRAPPI NG_KEY_TYPE_| NCONSI STENT 0x000000F2
#defi ne CKR_USER_ALREADY_LOGGED I N 0x00000100
#defi ne CKR_USER NOT_LOGGED | N 0x00000101
#defi ne CKR_USER PI N_NOT_I NI TI ALI ZED 0x00000102
#def i ne CKR_USER TYPE_I NVALI D 0x00000103
#defi ne CKR_USER_ANOTHER_ALREADY_LOGGED_ | N 0x00000104
#def i ne CKR_USER TOO MANY_TYPES 0x00000105
#defi ne CKR_WRAPPED_KEY_I| NVALI D 0x00000110
#def i ne CKR_WRAPPED KEY_LEN_RANGE 0x00000112
#defi ne CKR_WRAPPI NG_KEY_HANDLE_| NVALI D 0x00000113
#def i ne CKR_WRAPPI NG_KEY_SI ZE_RANGE 0x00000114
#defi ne CKR_WRAPPI NG_KEY_TYPE_I NCONSI STENT 0x00000115
#def i ne CKR_RANDOM SEED NOT_SUPPORTED 0x00000120
#defi ne CKR_RANDOM NO_RNG 0x00000121
#def i ne CKR_BUFFER _TOO SMVALL 0x00000150
#defi ne CKR_SAVED_STATE_| NVALI D 0x00000160
#def i ne CKR_|I NFORVATI ON_SENSI Tl VE 0x00000170
#defi ne CKR_STATE_UNSAVEABLE 0x00000180
#def i ne CKR_CRYPTOKI _NOT_I NI TI ALI ZED 0x00000190
#defi ne CKR_CRYPTOKI _ALREADY_I NI TI ALI ZED 0x00000191
#defi ne CKR_MJUTEX_ BAD 0x000001A0
#defi ne CKR_MJUTEX_NOT_LOCKED 0x000001A1
#def i ne CKR_VENDCR _DEFI NED 0x80000000
Section 11.1 defines the meaning of each CK_RV vaue. Return vaues

CKR_VENDOR_DEFINED and above are permanently reserved for token vendors.
For interoperability, vendors should register their return values through the PKCS
process.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 62

¢ CK_NOTIFY

CK_NOTIFY is the type of a pointer to a function used by Cryptoki to perform
notification callbacks. It is defined asfollows:

typedef CK_CALLBACK FUNCTI ON(CK_RV, CK_NOTI FY) (
CK_SESSI ON_HANDLE hSessi on,
CK_NOTI FI CATI ON event,
CK_VO D_PTR pApplication

)
The arguments to a notification callback function have the following meanings:
hSession The handle of the session performing the callback
event Thetype of notification callback

pApplication An application-defined value. Thisisthe same value
aswas passed to C_OpenSession to open the session
performing the callback

¢ CK_C XXX

Cryptoki aso defines an entire family of other function pointer types. For each function
C_XXX in the Cryptoki API (there are 68 such functions in Cryptoki Version 2612.1;
see Section 11 for detailed information about each of them), Cryptoki defines a type
CK_C_XXX, which is a pointer to a function with the same arguments and return value
as C_XXX has. An appropriately-set variable of type CK_C_XXX may be used by an
application to call the Cryptoki function C_XXX.

¢ CK_FUNCTION_LIST; CK_FUNCTION_LIST_PTR;
CK_FUNCTION_LIST_PTR_PTR

CK_FUNCTION_LIST is a structure which contains a Cryptoki version and a function
pointer to each function in the Cryptoki API. It isdefined asfollows:

t ypedef struct CK _FUNCTI ON LI ST {
CK_VERSI ON ver si on;
CK Clnitialize Clnitialize;

C Finalize C Finalize;

C GetInfo C Getlnfo;

C Get FunctionLi st C Get Functi onLi st;

C GetSlotList C GetSlotlList;

C GetSlotlInfo C GetSlotlnfo;

C Get Tokenl nfo C _CGet Tokenl nf o;

C Get Mechani snii st C_Get Mechani snii st ;

Copyright © 1994-1999 RSA Laboratories

Page 63

. Get Mechani sm nfo C_Get Mechani snl nf o;
ni t Token C_I nit Token;

InitPIN CInitPIN

> Set PIN C_Set PIN;

enSessi on C ., OpenSessi on;

oseSessi on C_C oseSessi on;

oseAl | Sessions C_Cl oseAl | Sessi ons;
t Sessi onl nfo C_Get Sessi onl nf 0;

t OperationState C CGet Operati onSt at e;
t Qper at i onSt ate C_Set Operati onSt at e;
gin C_Login;

gout C Logout

eate(bj ect C Create(bject;

pyObj ect C _CopyQbj ect ;

stroyoj ect C Dest royOOJ ect;

t bj ect Si ze C _Get bj ect Si ze;

tAttri butevalue C GetAttri buteVal ue;
> Set AttributeVal ue C SetAttributeVal ue;
i ndObj ectslnit C_FindObjectslnit;

i ndObj ects C_Fi ndObj ect s;

i ndObj ect sFi nal C_Fi ndCbj ect sFi nal ;
ncrypt Init C Encryptlnit;

. Encrypt C_Encrypt,;

. Encrypt Updat e C _Encrypt Updat e;

., Encrypt Fi nal C_Encrypt Fi nal ;
cryptlinit C Decryptlnit;

crypt C Decrypt,;

crypt Updat e C Decrypt Updat e;

crypt Final C_DecryptFinal;

i gestlnit C Digestlnit;

I gest C_Di gest;

i gest Updat e C_Di gest Updat e;

I gest Key C_Di gest Key;

i gest Fi nal C_Di gest Final ;

ignlnit C_Si gnl nit;

ign C_Sign;

i gnUpdat e C_Si gnUpdat e;

i gnFi nal C_Si gnFi nal ;

[gnRecoverI nit C_Si gnRecoverI nit;

[gnRecover C_ Si gnRecover;

erifylnit C Verifylnit;

22299

@QQQQSS%QQQQQ

DDDDDQQQQmmmm'ﬂ'ﬂ'ﬂm

S EORONONORON)]

> Verify C Verify;

> VerifyUpdate C VerifyUpdate;

> VerifyFinal C VerifyFinal;

> VerifyRecoverlnit C Veri fyRecoverI nit;

<

erifyRecover C_VerifyRecover;

gest Encrypt Updat e C_Di gest Encrypt Updat e;
crypt Di gest Updat e C Decrypt Di gest Updat e;
i gnEncrypt Updat e C_Si gnEncr ypt Updat e;
crypt Veri fyUpdate C Decrypt Veri fyUpdat e;

OOIOOOOOO

200009220000002200000922000009202000002200000920

g@gg

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 64

CK_C _Cener at eKey C_Gener at eKey;

CK_C Gener at eKeyPai r C _Gener at eKeyPai r;
. C WapKey C W apKey;

C _Unw apKey C_Unw apKey;,

C DeriveKey C DeriveKey;

C _SeedRandom C_SeedRandom

C CGener at eRandom C_Gener at eRandom

C

C_

R

Get Functi onSt atus C_Get Functi onSt at us;
. C Cancel Functi on C_Cancel Functi on;
CK_C Wi t For Sl ot Event C Wi t For Sl ot Event ;
} CK_FUNCTI ON_LI ST;

RRAI/KI/KL

Each Cryptoki library has a static CK_FUNCTION_LIST structure, and a pointer to it
(or to a copy of it which is also owned by the library) may be obtained by the
C_GetFunctionList function (see Section 11.2). The value that this pointer pointsto can
be used by an application to quickly find out where the executable code for each function

in the Cryptoki API is located. Every function in the Cryptoki APl must have an entry
point defined in the Cryptoki library’€K_FUNCTION_LIST structure If a particular
function in the Cryptoki API is not supported by a library, then the function pointer for
that function in the library €K_FUNCTION_LIST structure should point to a function
stub which simply returns CKR_FUNCTION_NOT_SUPPORTED.

An application may or may not be able to modify a Cryptoki library’s static
CK_FUNCTION_LIST structure. Whether or not it can, it should never attempt to do
So.

CK_FUNCTION_LIST_PTR is a pointer to £K_FUNCTION_LIST.

CK_FUNCTION_LIST_PTR_PTR is a pointer to £K_FUNCTION_LIST_PTR.

9.7 Locking-related types

The types in this section are provided solely for applications which need to access
Cryptoki from multiple threads simultaneouslpplications which will not do this need
not use any of these types.

¢ CK_CREATEMUTEX

CK_CREATEMUTEX is the type of a pointer to an application-supplied function which
creates a new mutex object and returns a pointer to it. It is defined as follows:

t ypedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_CREATEMUTEX) (
CK_VO D _PTR_PTR ppMit ex

);

Copyright © 1994-1999 RSA Laboratories

Page 65

CallingaCK_CREATEMUTEX function returns the pointer to the new mutex object in
the location pointed to by ppMutex. Such a function should return one of the following
values: CKR_OK, CKR_GENERAL_ERROR, CKR_HOST_MEMORY.

¢ CK_DESTROYMUTEX

CK_DESTROYMUTEX is the type of a pointer to an application-supplied function
which destroys an existing mutex object. It isdefined asfollows:

t ypedef CK_CALLBACK FUNCTI ON(CK_RV, CK_DESTROYMJUTEX) (
CK_VO D_PTR pMut ex
)

The argument to a CK_DESTROYMUTEX function is a pointer to the mutex object to
be destroyed. Such a function should return one of the following values. CKR_OK,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MUTEX_BAD.

¢ CK_LOCKMUTEX and CK_UNLOCKMUTEX

CK_LOCKMUTEX is the type of a pointer to an application-supplied function which
locks an existing mutex object. CK_UNLOCKMUTEX is the type of a pointer to an
application-supplied function which unlocks an existing mutex object. The proper
behavior for these types of functionsis as follows:

 If aCK_LOCKMUTEX function is caled on a mutex which is not locked, the
calling thread obtains alock on that mutex and returns.

 If aCK_LOCKMUTEX function is caled on a mutex which is locked by some
thread other than the calling thread, the calling thread blocks and waits for that mutex
to be unlocked.

 IfaCK_LOCKMUTEX function is called on a mutex which is locked by the calling
thread, the behavior of the function call is undefined.

 If aCK_UNLOCKMUTEX function is called on a mutex which is locked by the
calling thread, that mutex is unlocked and the function call returns. Furthermore:

» If exactly one thread was blocking on that particular mutex, then that thread stops
blocking, obtains alock on that mutex, and its CK_LOCKMUTEX call returns.

» If more than one thread was blocking on that particular mutex, then exactly one of
the blocking threads is selected somehow. That lucky thread stops blocking,
obtains alock on the mutex, and its CK_LOCKMUTEX call returns. All other
threads blocking on that particular mutex continue to block.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 66

 IfaCK_UNLOCKMUTEX function is called on a mutex which is not locked, then
the function call returnsthe error code CKR_MUTEX_NOT_LOCKED.

 IfaCK_UNLOCKMUTEX function is called on a mutex which is locked by some
thread other than the calling thread, the behavior of the function call is undefined.

CK_LOCKMUTEX isdefined asfollows:

t ypedef CK_CALLBACK FUNCTI ON(CK_RV, CK_LOCKMJTEX) (
CK_VO D_PTR pMut ex
)

The argument to a CK_LOCKMUTEX function is a pointer to the mutex object to be
locked. Such a function should return one of the following values. CKR_OK,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_MUTEX_BAD.

CK_UNLOCKMUTEX isdefined asfollows:

t ypedef CK_CALLBACK FUNCTI ON(CK_RV, CK_UNLOCKMUTEX) (
CK_VO D_PTR pMuit ex
)

The argument to a CK_UNLOCKMUTEX function is a pointer to the mutex object to
be unlocked. Such a function should return one of the following values:. CKR_OK,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MUTEX_BAD,
CKR_MUTEX_NOT_LOCKED.

¢ CK_C_INITIALIZE_ARGS; CK_C_INITIALIZE_ARGS PTR

CK_C_INITIALIZE_ARGS is a structure containing the optional arguments for the
C_Initialize function. For this version of Cryptoki, these optional arguments are all
concerned with the way the library deals with threads. CK_C _INITIALIZE_ARGS is
defined as follows:

typedef struct CK C IN TIALI ZE _ARGS {
CK_CREATEMUTEX Cr eat eMut ex;
CK_DESTROYMUTEX Dest r oyMut ex;
CK_LOCKMUTEX LockMut ex;
CK_UNLOCKMUTEX Unl ockMut ex;
CK_FLAGS fl ags;
CK_ VA D _PTR pReserved;

} CK_C_I NI TI ALI ZE_ARGS;

Thefields of the structure have the following meanings:

CreateMutex pointer to afunction to use for creating mutex objects

Copyright © 1994-1999 RSA Laboratories

Page 67

DestroyMutex pointer to afunction to use for destroying mutex
objects

LockMutex pointer to afunction to use for locking mutex objects

UnlockMutex pointer to afunction to use for unlocking mutex
objects

flags it flags specifying options for C_l nitialize; the flags
are defined below

pReserved reserved for future use. Should be NULL_PTR for this
version of Cryptoki

The following table defines the flags field:

Table 131313, C_Initialize Parameter Flags

Bit Flag Mask Meaning

CKF_LIBRARY_CANT _CREATE OS THREADS | 0x00000001 | TRUE if
application
threads which
are executing
calsto the
library may not
use native
operating system
callsto spawn
new threads,
FALSE if they
may

CKF_OS LOCKING_OK 0x00000002 | TRUE if the
library can use
the native
operation system
threading model
for locking;
FALSE
otherwise

CK_C_INITIALIZE_ARGS PTR isapointer toaCK_C_INITIALIZE_ARGS,

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 68

10. Objects

Cryptoki recognizes a number of classes of objects, as defined in the
CK_OBJECT_CLASS datatype. An object consists of a set of attributes, each of which
has a given value. Each attribute that an object possesses has precisely one value. The
following figure illustrates the high-level hierarchy of the Cryptoki objects and some of
the attributes they support:

Object
Class
Storage HW Feature

Token Feature Type

Private

Label

Modifiable

Data Certificate Key

Application
Object Identifier
Value

Figure 5, Object Attribute Hierarchy

Cryptoki provides functions for creating, destroying, and copying objects in general, and
for obtaining and modifying the values of their attributes. Some of the cryptographic
functions (e.g., C_GenerateK ey) also create key objects to hold their results.

Objects are always “well-formed” in Cryptoki—that is, an object always contains all
required attributes, and the attributes are always consistent with one another from the
time the object is created. This contrasts with some object-based paradigms where an
object has no attributes other than perhaps a class when it is created, and is uninitialized
for some time. In Cryptoki, objects are always initialized.

Tables throughout most of Section 10 define each Cryptoki attribute in terms of the data
type of the attribute value and the meaning of the attribute, which may include a default
initial value. Some of the data types are defined explicitly by Cryptek., (
CK_OBJECT_CLASS). Attribute values may also take the following types:

Copyright © 1994-1999 RSA Laboratories

Page 69

Bytearray an arbitrary string (array) of CK_BYTEs

Biginteger astring of CK_BY TEsrepresenting an unsigned
integer of arbitrary size, most-significant byte first
(e.g., theinteger 32768 is represented as the 2-byte
string 0x80 0x00)

Local string an unpadded string of CK_CHARS (see Table 3Fable
3TFable-3) with no null-termination

RFC2279 string an unpadded string of CK UTF8CHARs with no null-
termination

A token can hold severa identical objects, i.e., it is permissible for two or more objects to
have exactly the same values for al their attributes.

With the exception of RSA private key objects (see Section 10.9.110.9.116.7.1), each \

type of object in the Cryptoki specification possesses a completely well-defined set of

Cryptoki attributes. For example, an X.509 public key certificate object (see Section
10.6.120-6:116:4-1) has precisely the following Cryptoki attributes: CKA_CLASS,

CKA _TOKEN, CKA_PRIVATE, CKA_MODIFIABLE, CKA LABEL,

CKA _CERTIFICATE TYPE, CKA SUBJECT, CKA_ID, CKA_ISSUER,
CKA_SERIAL_NUMBER, CKA_VALUE. Some of these attributes possess default

values, and need not be specified when creating an object; some of these default values

may even be the empty string (*”). Nonetheless, the object possesses these attributes. A
given object has a single value for each attribute it possesses, even if the attribute is a
vendor-specific attribute whose meaning is outside the scope of Cryptoki.

In addition to possessing Cryptoki attributes, objects may possess additional vendor-
specific attributes whose meanings and values are not specified by Cryptoki.

10.1 Creating, modifying, and copying objects

All Cryptoki functions that create, modify, or copy objects take a template as one of their
arguments, where the template specifies attribute values. Cryptographic functions that
create objects (see Section 11.14) may also contribute some additional attribute values
themselves; which attributes have values contributed by a cryptographic function call
depends on which cryptographic mechanism is being performed (see Section 12). In any
case, all the required attributes supported by an object class that do not have default
values must be specified when an object is created, either in the template or by the
function itself.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 70

10.1.1 Creating objects

Objects may be created with the Cryptoki functions C_CreateObject (see Section 11.7),
C_GenerateKey, C_GenerateKeyPair, C_UnwrapKey, and C_DeriveK ey (see Section
11.14). In addition, copying an existing object (with the function C_CopyObject) aso
creates a new object, but we consider this type of object creation separately in Section
10.1.3.

Attempting to create an object with any of these functions requires an appropriate
template to be supplied.

1

If the supplied template specifies a value for an invalid attribute, then the attempt
should fail with the error code CKR_ATTRIBUTE_TYPE_INVALID. An attributeis
valid if it is either one of the attributes described in the Cryptoki specification or an
additional vendor-specific attribute supported by the library and token.

If the supplied template specifies an invalid value for a valid attribute, then the
attempt should fail with the error code CKR_ATTRIBUTE_VALUE_INVALID. The
valid values for Cryptoki attributes are described in the Cryptoki specification.

If the supplied template specifies a value for a read-only attribute, then the attempt
should fail with the error code CKR_ATTRIBUTE_READ_ONLY. Whether or not a
given Cryptoki attribute is read-only is explicitly stated in the Cryptoki specification;
however, a particular library and token may be even more restrictive than Cryptoki
specifies. In other words, an attribute which Cryptoki says is not read-only may
nonetheless be read-only under certain circumstances (i.e., in conjunction with some
combinations of other attributes) for a particular library and token. Whether or not a
given non-Cryptoki attribute is read-only is obviously outside the scope of Cryptoki.

If the attribute values in the supplied template, together with any default attribute
values and any attribute values contributed to the object by the object-creation
function itself, are insufficient to fully specify the object to create, then the attempt
should fail with the error code CKR_TEMPLATE_INCOMPLETE.

If the attribute values in the supplied template, together with any default attribute
values and any attribute values contributed to the object by the object-creation
function itself, are inconsistent, then the attempt should fail with the error code
CKR_TEMPLATE_INCONSISTENT. A set of attribute values is inconsistent if not
al of its members can be satisfied simultaneously by the token, athough each value
individually is valid in Cryptoki. One example of an Hieomplete—inconsistent
template would be using a template which specifies two different values for the same
attribute. Another example would be trying to create an RC4 secret key object (see
Section 10.10.3316-16:.316.8.3) with a CKA_MODULUS attribute (which is
appropriate for various types of public keys (see Section 10.816:810:6) or private keys
(see Section 10.916.916.7), but not for RC4 keys). A final example would be a
template for creating an RSA public key with an exponent of 17 on a token which

Copyright © 1994-1999 RSA Laboratories

Page 71

requires all RSA public keys to have exponent 65537. Note that this final example of

an inconsistent template is token-dependent—on a different token (one which permits
the value of 17 for an RSA public key exponent), such a template wotlde
inconsistent.

6. If the supplied template specifies the same value for a particular attribute more than
once (or the template specifies the same value for a particular attribute that the object-
creation function itself contributes to the object), then the behavior of Cryptoki is not
completely specified. The attempt to create an object can either succeed—thereby
creating the same object that would have been created if the multiply-specified
attribute had only appeared once—or it can fail with error code
CKR_TEMPLATE_INCONSISTENT. Library developers are encouraged to make
their libraries behave as though the attribute had only appeared once in the template;
application developers are strongly encouraged never to put a particular attribute into
a particular template more than once.

If more than one of the situations listed above applies to an attempt to create an object,
then the error code returned from the attempt can be any of the error codes from above
that applies.

10.1.2 Modifying objects

Objects may be modified with the Cryptoki functiGnSetAttributeValue (see Section

11.7). The template supplied © SetAttributeValue can contain new values for
attributes which the object already possesses; values for attributes which the object does
not yet possess; or both.

Some attributes of an object may be modified after the object has been created, and some
may not. In addition, attributes which Cryptoki specifies are modifiable may aatoglly

be modifiable on some tokens. That is, if a Cryptoki attribute is described as being
modifiable, that really means only that it is modifiablesofar as the Cryptoki
specification is concerned. A particular token might not actually support modification of
some such attributes. Furthermore, whether or not a particular attribute of an object on a
particular token is modifiable might depend on the values of certain attributes of the
object. For example, a secret key obje€ilsA_SENSITIVE attribute can be changed

from FALSE to TRUE, but not the other way around.

All the scenarios in Section 10.1.1—and the error codes they return—apply to modifying
objects with C_SetAttributeValue, except for the possibility of a template being
incomplete.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 72

10.1.3 Copying objects

Objects may be copied with the Cryptoki function C_CopyObject (see Section 11.7). In
the process of copying an object, C_CopyObject aso modifies the attributes of the
newly-created copy according to an application-supplied template.

The Cryptoki attributes which can be modified during the course of a C_CopyObject
operation are the same as the Cryptoki attributes which are described as being modifiable,
plus the three gspecia attributes CKA_TOKEN, CKA_PRIVATE, and
CKA_MODIFIABLE. To be more precise, these attributes are modifiable during the
course of a C_CopyObject operation insofar as the Cryptoki specification is concerned.

A particular token might not actually support modification of some such attributes during
the course of a C_CopyObject operation. Furthermore, whether or not a particular
attribute of an object on a particular token is modifiable during the course of a
C_CopyObject operation might depend on the values of certain attributes of the object.
For example, a secret key objecC&KA_SENSITIVE attribute can be changed from
FALSE to TRUE during the course ofGa CopyObject operation, but not the other way
around.

All the scenarios in Section 10.1.1—and the error codes they return—apply to copying
objects withC_CopyObject, except for the possibility of a template being incomplete.

10.2 Common attributes

The following table defines the attributes common to all objects:

Table 14, Common Object Attributes

Attribute Data Type M eaning
CKA_CLASS CK_OBJECT_CLASS Object class (type)

Must be specified when object is created

Cryptoki Version 2.1 supports the following values @€A CLASS (i.e., the following
classes (types) of objects): CKO HW FEATURE, CKO DATA,
CKO CERTIFICATE, CKO PUBLIC KEY, CKO PRIVATE KEY, and
CKO SECRET KEY.

10.3 Hardwar e Feature Objects

Hardware feature object€ KO _HW_FEATURE) represent features of the device. They
provide an easily expandable method for introducing new value-based features to the
cryptoki interface. The following figure illustrates the hierarchy of hardware feature
objects and some of the attributes they support:

Copyright © 1994-1999 RSA Laboratories

Page 73

HW Feature

Feature Type

T

Monotonic Clock
Counter

Value

Reset by Init
Has Been Reset
Value

Figure 6, Hardwar e Feature Object Attribute Hierar chy

When searching for objects using C FindObjectslnit and C FindObjects, hardware
feature objects are not returned unless the CKA CL ASS attribute in the template has the
vaue CKO HW_FEATURE. This protects applications written to previous versions of
cryptoki from finding objects that they do not understand.

Table 15, Har dwar e Feature Common Attributes

Attribute Data Type Meaning
CKA HW FEATURE TYPE | CK HW FEATURE | Hardware feature (type)

Cryptoki Version 2.1 supports the following values for CKA FEATURE TYPE:
CKH MONOTONIC COUNTER, and CKH CLOCK.

10.3.1 Clock Objects

Clock objects represent real-time clocks that exist on the device. This represents the same
clock source asthe utcTimefieldinthe CK TOKEN [INFO structure.

Table 16, Clock Object Attributes

Attribute Data Type Meaning

CKA VALUE | CK_CHAR[16] | Current time as a character-string of length 16,
represented in the format YYYY MM DDhhmmssxx
(4 charactersfor the year; 2 characters each for the
month, the day, the hour, the minute, and the
second; and 2 additional reserved ‘0’ characters

The CKA VALUE attribute may be set using th& SetAttributeValue function if
permitted by the device. The session used to set the time must be logged in. The

Copyright © 1994-1999 RSA Laboratories.

device

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 74

may reguire the SO to be the user logged in to modify the time vaue.
C SetAttributeValue will return the error CKR USER NOT LOGGED IN to indicate
that adifferent user typeisrequired to set the value.

10.3.2 Monotonic Counter Objects

Monotonic counter objects represent hardware counters that exist on the device. The
counter is guaranteed to increase each time its value is read, but not necessarily by one.

Table 17, Monotonic Counter Attributes

Attribute Data Type M eaning

CKA RESET ON INIT! | CK BBOOL | The value of the counter will reset to a
previously returned value if thetoken is
initialized using C InitializeT oken.

CKA_ HAS RESET! CK_BBOOL | The vaue of the counter has been reset at
least once at some point in time.

CKA VALUE! Byte Array The current version of the monotonic
counter. The value is returned in big endian
order.

'Read Only

The CKA VALUE attribute may not be set by the client.

10.4 Storage Objects

Table 181814, Common Storage Object Attributes

Attribute Data Type Meaning

CKA—CLASS CK_OBJECT_CLASS | Object-class{type)

CKA_TOKEN CK_BBOOL TRUE if object is atoken object;
FALSE if object is a session object
(default FALSE)

CKA_PRIVATE CK_BBOOL TRUE if object is a private object;

FALSE if object isa public object.
Default value is token-specific, and
may depend on the values of other
attributes of the object.

CKA_MODIFIABLE | CK_BBOOL TRUE if object can be modified
(default TRUE)
CKA_LABEL Loeal-stringRFC2279 | Description of the object (default
string empty)

Copyright © 1994-1999 RSA Laboratories

Page 75

Only the CKA_LABEL attribute can be modified after the object is created. (The
CKA_TOKEN, CKA_PRIVATE, and CKA_MODIFIABLE attributes can be changed
in the process of copying an object, however.)

The CKA_TOKEN attribute identifies whether the object is a token object or a session
object.

When the CKA_PRIVATE attribute is TRUE, a user may not access the object until the
user has been authenticated to the token.

The value of the CKA_MODIFIABLE attribute determines whether or not an object is
read-only. It may or may not be the case that an unmodifiable object can be deleted.

The CKA_LABEL attribute isintended to assist users in browsing.

10.5 Dataobjects

Data objects (object class CKO_DATA) hold information defined by an application.
Other than providing access to it, Cryptoki does not attach any special meaning to a data
object. The following table lists the attributes supported by data objects, in addition to the
common attributes listed in Table 14Fable-14 and Table 18Fable 18Fable 14:

Table 191915, Data Object Attributes

Attribute Datatype | Meaning

CKA_APPLICATION | Leeal Description of the application that manages the
stringRFC2 | object (default empty)
279 string

CKA OBJECT ID Byte Array | DER-encoding of the object identifier indicating
the data object type (default empty)

CKA_VALUE Bytearray | Value of the object (default empty)

Both of these attributes may be modified after the object is created.

The CKA_APPLICATION attribute provides a means for applications to indicate
ownership of the data objects they manage. Cryptoki does not provide a means of
ensuring that only a particular application has access to a data object, however.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 76

The CKA OBJECT |D attribute provides an application independent and expandable
way to indicate the type of the data object value. Cryptoki does not provide a means of
insuring that the data object identifier matches the datavaue.

The following is a sample template containing attributes for creating a data object:

CK _OBJECT_CLASS cl ass = CKO DATA;
CK_UTF8CHAR label[] = “A data object”;

CK_UTF8CHAR application[] = “An application”;
CK_BYTE data[] = “Sample data”;

CK_BBOOL true = TRUE;

CK_ATTRIBUTE template[] = {

{CKA_CLASS, &class, sizeof(class)},

{CKA_TOKEN, &true, sizeof(true)},

{CKA_LABEL, label, sizeof(label)-1}, o
{CKA_APPLICATION, application, sizeof(application)-1},
{CKA_VALUE, data, sizeof(data)}

%

10.6 Certificate objects

Thefollowing figure illustrates details of certificate objects:

Certificate

Certificate Type

X.509 Public X.509 Attribute
Key Certificate Certificate
Subject Owner
ID Issuer
Issuer Serial Number
Serial Number Value
Value

Figure 7, Certificate Object Attribute Hierarchy

Certificate objects (object class CKO_CERTIFICATE) hold public-key or attribute
certificates. Other than providing access to certificate objects, Cryptoki does not attach
any special meaning to certificates. The following table defines the common certificate
object attributes, in addition to the common attributes listed in Table 14Fable-14Fable- 14
and Table 18Fable 18Fable 14:

Copyright © 1994-1999 RSA Laboratories

Page 77

Table 202016, Common Certificate Object Attributes

Attribute Data type Meaning
CKA_CERTIFICATE_TYPE® | CK_CERTIFICATE_TYPE | Type of
certificate

"Must be specified when the object is created.

The CKA_CERTIFICATE_TYPE attribute may not be modified after an object is
created.

10.6.1 X.509 public key certificate objects

X.509 certificate objects (certificate type CKC_X 509) hold X.509 public key
certificates. The following table defines the X.509 certificate object attributes, in
addition to the common attributes listed in Table 14Fable-14, Table 18Fable-18Fable-14
and Table 20Fable 20Fable 16:

Table 212117, X.509 Certificate Object Attributes

Attribute Datatype | Meaning

CKA_SUBJECT! Byte array | DER-encoding of the certificate
subject name

CKA_ID Byte array | Key identifier for public/private key
pair (default empty)

CKA_ISSUER Bytearray | DER-encoding of the certificate issuer
name (default empty)

CKA_SERIAL_NUMBER | Bytearray | DER-encoding of the certificate serial
number (default empty)

CKA_VALUE' Bytearray | BER-encoding of the certificate

"Must be specified when the object is created.

Only the CKA_ID, CKA_ISSUER, and CKA_SERIAL_NUMBER attributes may be
modified after the object is created.

The CKA_ID attribute is intended as a means of distinguishing multiple public-
key/private-key pairs held by the same subject (whether stored in the same token or not).
(Since the keys are distinguished by subject name as well as identifier, it is possible that
keys for different subjects may have the same CKA_ID value without introducing any
ambiguity.)

It is intended in the interests of interoperability that the subject name and key identifier
for a certificate will be the same as those for the corresponding public and private keys
(though it is not required that all be stored in the same token). However, Cryptoki does

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 78

not enforce this association, or even the uniqueness of the key identifier for a given
subject; in particular, an application may leave the key identifier empty.

The CKA_ISSUER and CKA_SERIAL_NUMBER attributes are for compatibility with
PKCS#7 and Privacy Enhanced Mail (RFC1421). Note that with the version 3 extensions
to X.509 certificates, the key identifier may be carried in the certificate. It is intended that
the CKA_ID value be identica to the key identifier in such a certificate extension,
although this will not be enforced by Cryptoki.

Thefollowing is a sample template for creating a certificate object:

CK_OBJECT_CLASS cl ass = CKO_CERTI FI CATE;
CK_CERTI FI CATE_TYPE cert Type = CKC_X 5009;
CK_UTF8CHAR label[] = “A certificate object”;
CK_BYTE subject[] ={...};
CK_BYTE id[] = {123};
CK_BYTE certificate[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_CERTIFICATE_TYPE, &certType, sizeof(certType)};
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_SUBJECT, subject, sizeof(subject)},
{CKA _ID, id, sizeof(id)},
{CKA_VALUE, certificate, sizeof(certificate)}
2

10.6.2 X.509 attribute certificate objects

X.509 attribute certificate objects (certificate type CKC X 509 ATTR CERT) hold
X.509 attribute certificates. The following table defines the X.509 attribute certificate
object attributes, in addition to the common attributes listed in Table 14Table-14, Table
18Table18and Table 20Table 20:

Table 22, X.509 Attribute Certificate Object Attributes

Copyright © 1994-1999 RSA Laboratories

Page 79

Attribute Data Type M eaning
CKA OWNER! Byte Array [DER-encoding of the attribute certificate's

subject field. Thisis distinct from the
CKA_SUBJECT attribute contained in
CKC X 509 certificates because the ASN.1
syntax and encoding are different.

CKA AC ISSUER Byte Array IDER-encoding of the attribute certificate’s

issuer field. Thisisdistinct from the

CKA ISSUER attribute contained in

CKC X 509 certificates because the ASN.1
syntax and encoding are different. (default

empty)

CKA_SERIAL _NUMBER | Byte Array [DER-encoding of the certificate serial number.
(default empty)

CKA VALUE* Byte Array BER-encoding of the certificate.

"Must be specified when the object is created

Only the CKA AC ISSUER and CKA SERIAL NUMBER attributes may be
modified after the object is created.

Thefollowing is a sample template for creating an X.509 attribute certificate object:

CK_OBJECT_CLASS cl ass = CKO_CERTI FI CATE;
CK_CERTI FI CATE_TYPE cert Type = CKC X 509 ATTR CERT;
CK UTF8CHAR | abel [] = "An attribute certificate object”;
CK_BYTE owner[] = {...};
CK BYTE certificate[] = {...};
CK BBOOL true = TRUE;
CK ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{ CKA CERTI FI CATE TYPE, &certType, sizeof(certType)};
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)-1},
{CKA_OMNNER, owner, sizeof (owner)},
{CKA VALUE, certificate, sizeof(certificate)}

(-]

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.7 Key objects

Thefollowing figureillustrates details of key objects:

Key
Key Type
ID
Start Date
End Date
Derive
Local
Public Key Private Kevy Secret Key
Subject Subject Sensitive
Encrypt Sensitive Encrypt
Verify Decrypt Decrypt
Verify Recover Sign Sign
Wrap Sign Recover Verify
Unwrap Wrap
Extractable Unwrap
Always Sensitive Extractable
Never Extractable Always Sensitive
Never Extractable

80

Figure 886, Key Attribute Detalil

Key objects hold encryption or authentication keys, which can be public keys, private
keys, or secret keys. The following common footnotes apply to all the tables describing
attributes of keys:

Table 232318, Common footnotes for key attribute tables
! Must be specified when object is created with C_CreateObject.

% Must not be specified when object is created with C_CreateObject.

® Must be specified when object is generated with C_GenerateKey or

C_GenerateKeyPair.

* Must not be specified when object is generated with C GenerateKey or

Copyright © 1994-1999 RSA Laboratories

Page 81

C_GenerateKeyPair.
> Must be specified when object is unwrapped with C_UnwrapK ey.
® Must not be specified when object is unwrapped with C_Unwr ap.

7 Cannot be revealed if object has its CKA_SENSITIVE attribute set to TRUE or its
CKA_EXTRACTABLE attribute set to FALSE.

8 May be modified after object is created with a C_SetAttributeValue call, or in the
process of copying object with a C_CopyObject call. As mentioned previoudly,
however, it is possible that a particular token may not permit modification of the
attribute, or may not permit modification of the attribute during the course of a
C_CopyObject call.

® Default value is token-specific, and may depend on the values of other attributes.

The following table defines the attributes common to public key, private key and secret
key classes, in addition to the common attributes listed in Table 14Fable-14 and Table
18Fable 18 able 14

Table 242419, Common Key Attributes

Attribute Data Type Meaning

CKA_KEY_TYPE™> | CK_KEY_TYPE | Typeof key

CKA_ID® Byte array Key identifier for key (default empty)

CKA_START DATE® | CK_DATE Start date for the key (default empty)

CKA_END DATE® CK_DATE End date for the key (default empty)

CKA_DERIVE® CK_BBOOL TRUE if key supports key derivation
(i.e., if other keys can be derived from
this one (default FALSE)

CKA_LOCAL**® CK_BBOOL TRUE only if key was either

» generated localy (i.e., on the token)
withaC_GenerateKey or
C_GenerateKeyPair call

» created withaC_CopyObject call
as acopy of akey which had its
CKA_LOCAL attribute set to
TRUE

The CKA_1D field is intended to distinguish among multiple keys. In the case of public
and private keys, this field assists in handling multiple keys held by the same subject; the

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 82

key identifier for a public key and its corresponding private key should be the same. The
key identifier should also be the same as for the corresponding certificate, if one exists.
Cryptoki does not enforce these associations, however. (See Section 10.610-616:4 for
further commentary.)

In the case of secret keys, the meaning of the CKA_ID attribute is up to the application.

Note that the CKA_START_DATE and CKA_END_DATE attributes are for reference
only; Cryptoki does not attach any special meaning to them. In particular, it does not
restrict usage of akey according to the dates; doing thisis up to the application.

The CKA_DERIVE attribute has the value TRUE if and only if it is possible to derive
other keys from the key.

The CKA_LOCAL attribute has the value TRUE if and only if the value of the key was
originally generated on the token by a C_GenerateKey or C_GenerateKeyPair call.

10.8 Public key objects

Public key objects (object class CKO_PUBLIC_KEY) hold public keys. Thisversion of
Cryptoki recognizes five types of public keys: RSA, DSA, ECDSA, Diffie-Hellman, and
KEA. The following table defines the attributes common to all public keys, in addition to
the common attributes listed in Table 14Fable14Table-14, Table 18Fable- 18T able- 14 and
Table 24Fable 24Fable 19:

Table 252520, Common Public Key Attributes

Attribute Data type Meaning

CKA_SUBJECT® Byte array DER-encoding of the key subject name
(default empty)

CKA_ENCRYPT® CK_BBOOL | TRUE if key supports encryption®

CKA_VERIFY® CK_BBOOL | TRUE if key supports verification
where the signature is an appendix to
the data’

CKA_VERIFY_RECOVER® | CK_BBOOL | TRUE if key supports verification
where the data is recovered from the
signature’

CKA_WRAP® CK_BBOOL | TRUE if key supports wrapping (i.e.,
can be used to wrap other keys)”

It is intended in the interests of interoperability that the subject name and key identifier
for a public key will be the same as those for the corresponding certificate and private

Copyright © 1994-1999 RSA Laboratories

Page 83
key. However, Cryptoki does not enforce this, and it is not required that the certificate
and private key aso be stored on the token.

To map between ISO/IEC 9594-8 (X.509) keyUsage flags for public keys and the PKCS
#11 attributes for public keys, use the following table.

Table 26, Mapping of X.509 key usage flags to cryptoki attributesfor public keys

Key usage flagsfor public keysin X.509 | Corresponding cryptoki attributesfor

public key certificates public keys.
dataEnci pherment CKA ENCRYPT

digital Signature, keyCertSign, cRLSign CKA VERIFY
digital Signature, keyCertSign, cRLSign CKA VERIFY RECOVER

keyAgreement CKA_DERIVE
keyEncipherment CKA_WRAP
nonRepudiation CKA_VERIFY
nonRepudiation CKA_VERIFY RECOVER

10.8.1 RSA public key objects

RSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_RSA) hold
RSA public keys. The following table defines the RSA public key object attributes, in
addition to the common attributes listed in Table 14Table-14, Table 18Table-18Table-14,
Table 24Fable 24Fable 19, and Table 25Fable 25Fable 20:

Table 272721, RSA Public Key Object Attributes

Attribute Datatype Meaning
CKA_MODULUS"*® Biginteger | Modulusn
CKA_MODULUS BITS*® CK_ULONG | Length in bits of modulus n
CKA_PUBLIC EXPONENT™® | Biginteger | Public exponent e

Depending on the token, there may be limits on the length of key components. See PKCS
#1 for more information on RSA keys.

Thefollowing is a sample template for creating an RSA public key object:

CK_OBJECT _CLASS cl ass = CKO _PUBLI C _KEY,;
CK_KEY_TYPE keyType = CKK_RSA;
CK_UTF8CHAR label[] = “An RSA public key object”;
CK_BYTE modulus[] ={...};

CK_BYTE exponent[] = {...};

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 84

CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA _TOKEN, &true, sizeof(true)},
{ CKA_LABEL, | abel, sizeof (| abel)-1},
{CKA WRAP, &true, sizeof(true)},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA_MODULUS, nodul us, sizeof (nodul us)},
{ CKA_PUBLI C_EXPONENT, exponent, sizeof (exponent)}

3
10.8.2 9.6.2. DSA public key objects
DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hold
DSA public keys. The following table defines the DSA public key object attributes, in

| addition to the common attributes listed in Table 14Fable 14, Table 18TFable 18Fable 14,
‘ Table 24Fable 24¥Fable 19, and Table 25Fable 25Fable 20:

‘ Table 282822, DSA Public Key Object Attributes

Attribute Datatype | Meaning

CKA_PRIME*® Biginteger | Prime p (512 to 1024 hits, in steps of 64 bits)
CKA_SUBPRIME™® | Biginteger | Subprime q (160 bits)

CKA_BASE-3° Biginteger | Baseg

CKA_VALUE"® Biginteger | Public vauey

The CKA _PRIME, CKA SUBPRIME and CKA_BASE attribute values are
collectively the “DSA parameters”. See FIPS PUB 186 for more information on DSA
keys.

The following is a sample template for creating a DSA public key object:

CK_OBJECT_CLASS cl ass = CKO _PUBLI C _KEY,;
CK_KEY_TYPE keyType = CKK_DSA;
| CK_UTF8CHAR label[] = “A DSA public key object”;
CK_BYTE prime[] ={...};
CK_BYTE subprime[] = {...};
CK_BYTE base[] ={...};
CK_BYTE value[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},

Copyright © 1994-1999 RSA Laboratories

Page 85

{CKA PRI VE, prine, sizeof(prine)},

{ CKA _SUBPRI ME, subprine, sizeof(subprine)},
{CKA BASE, base, sizeof(base)},

{CKA VALUE, val ue, sizeof(value)}

b
10.8.3 ECDSA public key objects

ECDSA public key objects (object class CKO _PUBLIC KEY, key type
CKK_ECDSA) hold ECDSA public keys. See Section 12.3 for more information about
ECDSA. Thefollowing table defines the ECDSA public key object attributes, in addition
to the common attributes listed in Table 14TFable- 14, Table 18TFable- 18Table-14, Table \
24T able 24T able-19, and Table 25T able 25T able-20: ‘

Table 292923, ECDSA Public Key Object Attributes ‘

Attribute Datatype | Meaning
CKA_ECDSA_PARAMS™® | Bytearray | DER-encoding of an X9.62
ECPar anet er s value

CKA_EC_POINT*® Bytearray | DER-encoding of X9.62 ECPoi nt value
P

The CKA_ECDSA_PARAM S attribute value is known as the “ECDSA parameters”.

The following is a sample template for creating an ECDSA public key object:

CK_OBJECT _CLASS cl ass = CKO _PUBLI C _KEY,;
CK_KEY_TYPE keyType = CKK_ECDSA,
CK_UTF8CHAR label[] = “An ECDSA public key object”;
CK_BYTE ecdsaParams[] ={...};

CK_BYTE ecPoint[] = {...};

CK_BBOOL true = TRUE;

CK_ATTRIBUTE template[] = {

{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},

{CKA_LABEL, label, sizeof(label)-1}, o
{CKA_ECDSA_PARAMS, ecdsaParams, sizeof(ecdsaParams)},
{CKA_EC_POINT, ecPoint, sizeof(ecPoint)}

¥
10.8.4 Diffie-Hellman public key objects

Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type
CKK_DH) hold Diffie-Hellman public keys. The following table defines the RSA public
key object attributes, in addition to the common attributes listed in Table 14¥Fable-14,
Table 18Fable 18Fable 14, Table 24Fable 24Fable 19, and Table 25Fable 25Fable 20:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 86

Table 303024, Diffie-Hellman Public Key Object Attributes

Attribute Datatype | Meaning
CKA_PRIME™*° Biginteger | Primep
CKA_BASE-3° Biginteger | Baseg
CKA_VALUE"® Biginteger | Publicvaluey

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-
Hellman parameters”. Depending on the token, there may be limits on the length of the
key components. See PKCS #3 for more information on Diffie-Hellman keys.

The following is a sample template for creating a Diffie-Hellman public key object:

CK_OBJECT _CLASS cl ass = CKO _PUBLI C _KEY,;

CK_KEY_TYPE keyType = CKK_DH;

CK_UTF8CHAR label[] = “A Diffie-Hellman public key
object”;

CK_BYTE prime[] = {...};

CK_BYTE base[] ={...};

CK_BYTE value[] ={...};

CK_BBOOL true = TRUE;

CK_ATTRIBUTE template[] = {

{CKA _CLASS, &class, sizeof(class)},

{CKA_KEY_TYPE, &keyType, sizeof(keyType)},

{CKA_TOKEN, &true, sizeof(true)},

{CKA_LABEL, label, sizeof(label)-1},

{CKA_PRIME, prime, sizeof(prime)},

{CKA_BASE, base, sizeof(base)},

{CKA_VALUE, value, sizeof(value)}

h
10.8.5 KEA public key objects

KEA public key objects (object class CKO_PUBLIC_KEY, key type CKK_KEA) hold
KEA public keys. The following table defines the KEA public key object attributes, in
addition to the common attributes listed in Table 14Fable-14, Table 18Fable-18Fable 14,
Table 24T able 24Fable-19, and Table 25Fable 25Fable 20:

Copyright © 1994-1999 RSA Laboratories

Page 87

Table 313125, KEA Public Key Object Attributes

Attribute Datatype | Meaning

CKA_PRIME™*° Biginteger | Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME™*® | Biginteger | Subprime q (160 bits)

CKA_BASE™>® Biginteger | Baseg (512 to 1024 bits, in steps of 64 bits)
CKA_VALUE**® Biginteger | Public valuey

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute vaues are
collectively the “KEA parameters”.

The following is a sample template for creating a KEA public key object:

CK_OBJECT_CLASS cl ass =
CK_KEY_TYPE keyType = CKK_KEA;
CK_UTF8CHAR label[] = “A KEA public key object”;
CK_BYTE prime[] = {...};
CK_BYTE subprime[] ={...};
CK_BYTE base[] ={...};
CK_BYTE value[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_PRIME, prime, sizeof(prime)},
{CKA_SUBPRIME, subprime, sizeof(subprime)},

{CKA_BASE, base, sizeof(base)},

CKO_PUBLI C_KEY;

{CKA_VALUE, value, sizeof(value)}

|3

10.9 Privatekey objects

Private key objects (object class CKO_PRIVATE_KEY) hold private keys. Thisversion
of Cryptoki recognizes five types of private key: RSA, DSA, ECDSA, Diffie-Hellman,
and KEA. The following table defines the attributes common to all private keys, in
addition to the common attributes listed in Table 14Fable-14, Table 18Fable 18Fable 14 |
and Table 24Fable 24Fable-19:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 88

Table 323226, Common Private Key Attributes

Attribute

Datatype

Meaning

CKA_SUBJECT®

Byte array

DER-encoding of certificate
subject name (default empty)

CKA_SENSITIVE?® (see below)

CK_BBOOL

TRUE if key is sensitive’

CKA_SECONDARY_AUTH

CK_BBOOL

TRUE isthe key requires a

secondary authentication to
take place before its use it
alowed. (default FALSE)

CKA USAGE COUNT?*®

CK_ULONG

Number of times the key has

been used for a cryptographic
operation.

CKA OBJECT LOCKED?**®

CK_BBOOL

TRUE if the key has been

locked due to unauthorized use
attempts.

CKA_AUTH_ATTEMPTS’

CK_ULONG

Number of authorization

attempts until
CKA OBJECT LOCKED

becomes TRUE.

CKA_DECRYPT®

CK_BBOOL

TRUE if key supports
decryption®

CKA_SIGN®

CK_BBOOL

TRUE if key supports
signatures where the signature
is an appendix to the data’

CKA_SIGN_RECOVER®

CK_BBOOL

TRUE if key supports
signatures where the data can
be recovered from the
signature’

CKA_UNWRAP®

CK_BBOOL

TRUE if key supports
unwrapping (i.e., can be used
to unwrap other keys)®

CKA_EXTRACTABLE® (see below)

CK_BBOOL

TRUE if key is extractable’

CKA_ALWAYS SENSITIVE**®

CK_BBOOL

TRUE if key has always had
the CKA_SENSITIVE
attribute set to TRUE

CKA_NEVER_EXTRACTABLE**®

CK_BBOOL

TRUE if key has never had the
CKA_EXTRACTABLE
attribute set to TRUE

After an object is created, the CKA_SENSITIVE attribute may be changed, but only to
the value TRUE. Similarly, after an object is created, the CKA_EXTRACTABLE

Copyright © 1994-1999 RSA Laboratories

Page 89

attribute may be changed, but only to the value FALSE. Attempts to make other changes
to the vaues of these attributes should return the error code
CKR_ATTRIBUTE_READ_ONLY.

If the CKA_SENSITIVE attribute is TRUE, or if the CKA_EXTRACTABLE attribute
Is FALSE, then certain attributes of the private key cannot be revealed in plaintext outside
the token. Which attributes these are is specified for each type of private key in the
attribute table in the section describing that type of key.

If the CKA_EXTRACTABLE attribute is FALSE, then the key cannot be wrapped.

It is intended in the interests of interoperability that the subject name and key identifier
for a private key will be the same as those for the corresponding certificate and public
key. However, thisis not enforced by Cryptoki, and it is not required that the certificate
and public key aso be stored on the token.

If the CKA SECONDARY _AUTH atribute is TRUE, then the Cryptoki
implementation will associate the new private key object with a PIN that is gathered from
a protected path. The new PIN must be presented to the token through a protected path
each time the key is used for a cryptographic operation. See section 6.7 for the complete
usage model. If CKA SECONDARY AUTH is TRUE, then CKA EXTRACTABLE
must be FALSE and CKA PRIVATE must be TRUE. Attempts to copy private keys
with CKA SECONDARY_AUTH set to TRUE in a manner that would violate the
above conditions. An _application can determine whether the setting the
CKA_ SECONDARY_ AUTH attribute to TRUE is supported by checking to see if the
CKF _SECONDARY AUTHENTICATION flagissetinthe CK_TOKEN_ INFO flags.

The CKA USAGE COUNT attribute indicates the number of times the object has been
used to perform a cryptographic operation. The Cryptoki implementation may return the
value CK_UNAVAILABLE INFORMATION from C GetAttributeValue if a usage
counter is not available in the device.

The CKA OBJECT LOCKED attribute is TRUE if the number of incorrect
authentication attempts has been exceeded. The object can not be used until it is
unlocked. The method used to unlock the object is implementation defined. The
application can not set this attribute.

The CKA AUTH ATTEMPTS attribute indicates the number of incorrect
authentication attempts remaining until the CKA_ OBJECT L OCKED attribute changes
from FALSE to TRUE. The implementation may return CK_EFFECTIVELY INFINITE
to indicate that the key can not be locked, or CK_UNAVAILABLE INFORMATION to
indicate that token policy forbids revelation of the information.

To map between ISO/IEC 9594-8 (X.509) keyUsage flags for public keys and the PKCS
#11 attributes for public keys, use the following table.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 0

Table 33, Mapping of X.509 key usage flags to cryptoki attributesfor private keys

Key usage flagsfor public keysin X.509 | Corresponding cryptoki attributesfor

public key certificates private keys.
dataEnci pherment CKA DECRYPT

digital Signature, keyCertSign, cRLSign CKA SIGN
digital Signature, keyCertSign, cRLSign CKA SIGN RECOVER

keyAgreement CKA_DERIVE
keyEncipherment CKA_UNWRAP
nonRepudiation CKA_SIGN
nonRepudiation CKA_SIGN_RECOVER

10.9.1 RSA privatekey objects

RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA)
hold RSA private keys. The following table defines the RSA private key object
attributes, in addition to the common attributes listed in Table 14Fable 14, Table 18Fable
18Table-14, Table 24Table 24Fable-19, and Table 32Fable 32T able 26:

Table 343427, RSA Private Key Object Attributes

Attribute Datatype | Meaning
CKA_MODULUS"*® Biginteger | Modulusn
CKA_PUBLIC_EXPONENT*® Big integer | Public exponent e
CKA_PRIVATE_EXPONENT™**’ | Biginteger | Private exponent d

CKA_PRIME_1*®' Biginteger | Primep

CKA_PRIME_2*°’ Biginteger | Primeq
CKA_EXPONENT_1*%/ Biginteger | Private exponent d modulo p-1
CKA_EXPONENT_2*%7 Biginteger | Private exponent d modulo g-1
CKA_COEFFICIENT*®/ Biginteger | CRT coefficient g mod p

Depending on the token, there may be limits on the length of the key components. See
PKCS #1 for more information on RSA keys.

Tokens vary in what they actually store for RSA private keys. Some tokens store all of
the above attributes, which can assist in performing rapid RSA computations. Other
tokens might store only the CKA_MODULUS and CKA_PRIVATE_EXPONENT
values.

Copyright © 1994-1999 RSA Laboratories

Page 91

Because of this, Cryptoki is flexible in dealing with RSA private key objects. When a

token generates an RSA private key, it stores whichever of the fields in Table 34Fable i
34TFable 27 it keeps track of. Later, if an application asks for the values of the key's
various attributes, Cryptoki supplies values only for attributes whose values it can obtain
(i.e., if Cryptoki is asked for the value of an attribute it cannot obtain, the request fails).
Note that a Cryptoki implementation may or may not be able and/or willing to supply
various attributes of RSA private keys which are not actually stored on the t&kgenif

a particular token stores values only for tHeKA PRIVATE_EXPONENT,
CKA_PRIME_1, and CKA_PRIME_2 attributes, then Cryptoki is certainble to

report values for all the attributes above (since they can all be computed efficiently from
these three values). However, a Cryptoki implementation may or may not actually do this
extra computation. The only attributes from Table-34TF&#f€able 27 for which a \
Cryptoki implementation isequired to be able to return values &&&A_MODULUS
andCKA_PRIVATE_EXPONENT.

If an RSA private key object is created on a token, and more attributes_from £rable
34Table34Fable 27 are supplied to the object creation call than are supported by the
token, the extra attributes are likely to be thrown away. If an attempt is made to create an
RSA private key object on a token with insufficient attributes for that particular token,
then the object creation call fails and returns CKR_TEMPLATE_INCOMPLETE.

Note that when generating an RSA private key, there i€Ké&_MODULUS BITS
attribute specified. This is because RSA private keys are only generated as part of an
RSA keypair, and theCKA_MODULUS BITS attribute for the pair is specified in the
template for the RSA public key.

The following is a sample template for creating an RSA private key object:

CK_OBJECT_CLASS cl ass = CKO PRI VATE KEY;

CK_KEY_TYPE keyType = CKK_RSA;

CK_UTF8CHAR label[] = “An RSA private key object”;

CK_BYTE subject[] ={...};

CK_BYTE id[] = {123};

CK_BYTE modulus[] ={...};

CK_BYTE publicExponent[] = {...};

CK_BYTE privateExponent[] ={...};

CK_BYTE primel[] = {...};;

CK_BYTE prime2[] ={...};

CK_BYTE exponentl[] = {...};

CK_BYTE exponent2[] ={...};

CK_BYTE coefficient[] ={...};

CK_BBOOL true = TRUE;

CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_SUBJECT, subject, sizeof(subject)},

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 92

{CKA ID, id, sizeof(id)},
{CKA _SENSI Tl VE, &true, sizeof(true)},
{ CKA_DECRYPT, &true, sizeof(true)},
{CKA SIGN, &true, sizeof(true)},
{CKA_MODULUS, nodul us, sizeof (nodul us)},
{ CKA_PUBLI C_EXPONENT, publicExponent,
si zeof (publ i cExponent) },
{ CKA PRI VATE_EXPONENT, privateExponent,
si zeof (pri vat eExponent)},
{CKA PRIME 1, prinel, sizeof(prinel)},
{CKA_PRIVE_2, prine2, sizeof(prinme2)},
{ CKA_EXPONENT 1, exponentl, sizeof(exponentl)},
{ CKA_EXPONENT_2, exponent2, sizeof (exponent2)},
{ CKA_COEFFI Cl ENT, coefficient, sizeof(coefficient)}

3
10.9.2 DSA private key objects

DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_DSA)
hold DSA private keys. The following table defines the DSA private key object
attributes, in addition to the common attributes listed in Table 14Fable-14, Table 18Fable
18Fable 14, Table 24T able 24Fable 19, and Table 32Fable 32Fable 26:

Table 353528, DSA Private Key Object Attributes

Attribute Datatype | Meaning

CKA_PRIME**® Biginteger | Primep (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME"*® | Biginteger | Subprime q (160 bits)

CKA_BASE™*° Biginteger | Baseg

CKA_VALUE"*®/ Biginteger | Private value x

The CKA_PRIME, CKA SUBPRIME and CKA_BASE attribute values are
collectively the “DSA parameters”. See FIPS PUB 186 for more information on DSA
keys.

Note that when generating a DSA private key, the DSA parametenstaspecified in

the key’s template. This is because DSA private keys are only generated as part of a DSA
key pair, and the DSA parameters for the pair are specified in the template for the DSA
public key.

The following is a sample template for creating a DSA private key object:
CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK_DSA;

CK_UTF8CHAR label[] = “A DSA private key object”;
CK_BYTE subject[] ={...};

Copyright © 1994-1999 RSA Laboratories

Page 93

CK BYTE id[] =
CK_BYTE pringe[]
CK_BYTE subpri
CK_BYTE base[] I
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof (Il abel)-1},
{
{
{

CKA SUBJECT, subject, sizeof(subject)},
CKA ID, id, sizeof(id)},
CKA SENSI Tl VE, &true, sizeof(true)},
{CKA SIGN, &true, sizeof(true)},
{CKA PRI VE, prine, sizeof(prinme)},
{CKA_SUBPRI ME, subprine, sizeof(subprine)},
{CKA BASE, base, sizeof(base)},
{CKA_VALUE, val ue, sizeof(value)}

1
10.9.3 ECDSA private key objects

ECDSA private key objects (object class CKO_PRIVATE_KEY, key type
CKK_ECDSA) hold ECDSA private keys. See Section 12.3 for more information about
ECDSA. The following table defines the ECDSA private key object attributes, in
addition to the common attributes listed in Table 14Table-14, Table 18Table 18Table-14,
Table 24Fable 24Fable 19, and Table 32Fable 32Fable 26:

Table 363629, ECDSA Private Key Object Attributes

Attribute Datatype | Meaning

CKA_ECDSA_PARAMS"*® | Bytearray | DER-encoding of an X9.62
ECPar anet er s value

CKA_VALUE"*®’ Biginteger | X9.62 private value d

The CKA_ECDSA_PARAM S attribute value is known as the “ECDSA parameters”.

Note that when generating an ECDSA private key, the ECDSA parameterstare
specified in the key's template. This is because ECDSA private keys are only generated
as part of an ECDSA keyair, and the ECDSA parameters for the pair are specified in
the template for the ECDSA public key.

The following is a sample template for creating an ECDSA private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK_ECDSA,

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 94

CK_UTF8CHAR label[] = “An ECDSA private key object”;

CK_BYTE subject[] ={...};

CK_BYTE id[] = {123};

CK_BYTE ecdsaParams[] ={...};

CK_BYTE value[] ={...};

CK_BBOOL true = TRUE;

CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_SUBJECT, subject, sizeof(subject)},
{CKA_ID, id, sizeof(id)},
{CKA_SENSITIVE, &true, sizeof(true)},
{CKA_DERIVE, &true, sizeof(true)},
{CKA_ECDSA_PARAMS, ecdsaParams, sizeof(ecdsaParams)},
{CKA_VALUE, value, sizeof(value)}

2
10.9.4 Diffie-Hellman private key objects

Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type
CKK_DH) hold Diffie-Hellman private keys. The following table defines the Diffie-
Hellman private key object attributes, in addition to the common attributes listed in Table
14Table-14, Table 18Fable-18Table-14, Table 24T able-24Fable-19, and Table 32Fable
32 able26:

Table 373730, Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME™*® Biginteger | Primep

CKA_BASE™*° Biginteger | Baseg

CKA_VALUE"*®’ Biginteger | Private valuex

CKA_VALUE BITS*® | CK_ULONG | Length in bits of private value x

The CKA_PRIME and CKA _BASE attribute values are collectively the “Diffie-
Hellman parameters”. Depending on the token, there may be limits on the length of the
key components. See PKCS #3 for more information on Diffie-Hellman keys.

Note that when generating an Diffie-Hellman private key, the Diffie-Hellman parameters
arenot specified in the key’'s template. This is because Diffie-Hellman private keys are
only generated as part of a Diffie-Hellman k®yr, and the Diffie-Hellman parameters

for the pair are specified in the template for the Diffie-Hellman public key.

The following is a sample template for creating a Diffie-Hellman private key object:

Copyright © 1994-1999 RSA Laboratories

Page 95

CK_OBJECT_CLASS cl ass = CKO PRI VATE KEY;

CK_KEY_TYPE keyType = CKK_DH;

CK_UTF8CHAR label[] = “A Diffie-Hellman private key

object”;

CK_BYTE subject]] = {...};

CK_BYTE id[] = {123},

CK_BYTE prime[] = {...};

CK_BYTE base[] ={...};

CK_BYTE value[] ={...};

CK_BBOOL true = TRUE;

CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_SUBJECT, subject, sizeof(subject)},
{CKA_ID, id, sizeof(id)},
{CKA_SENSITIVE, &true, sizeof(true)},
{CKA_DERIVE, &true, sizeof(true)},
{CKA_PRIME, prime, sizeof(prime)},
{CKA_BASE, base, sizeof(base)},
{CKA_VALUE, value, sizeof(value)}

¥
10.9.5 KEA privatekey objects

KEA private key objects (object class CKO_PRIVATE_KEY, key type CKK_KEA)
hold KEA private keys. The following table defines the KEA private key object
attributes, in addition to the common attributes listed in Table 14Fable 14, Table 18Fable |
18Fable 14, Table 24T able 24Fable 19, and Table 32Fable 32Fable 26: ‘

Table 383831, KEA Private Key Object Attributes ‘

Attribute Datatype | Meaning

CKA_PRIME**® Biginteger | Primep (512 to 1024 bits, in steps of
64 bits)

CKA_SUBPRIME"*® | Biginteger | Subprime q (160 bits)

CKA_BASE™*° Biginteger | Base g (512 to 1024 hits, in steps of
64 bits)

CKA_VALUE"*®/ Biginteger | Private valuex

The CKA_PRIME, CKA_SUBPRIME and CKA BASE attribute values are
collectively the “KEA parameters”.

Note that when generating a KEA private key, the KEA parametersoaspecified in
the key's template. This is because KEA private keys are only generated as part of a

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 96

KEA key pair, and the KEA parameters for the pair are specified in the template for the
KEA public key.

Thefollowing is a sample template for creating a KEA private key object:

CK_OBJECT_CLASS cl ass = CKO PRI VATE KEY;

CK_KEY_TYPE keyType = CKK_KEA;

CK_UTF8CHAR label[] = “A KEA private key object”;

CK_BYTE subject[] ={...};

CK_BYTE id[] = {123};

CK_BYTE prime[] ={...};

CK_BYTE subprime[] = {...};

CK_BYTE base[] ={...};

CK_BYTE value[] ={...};

CK_BBOOL true = TRUE;

CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_SUBJECT, subject, sizeof(subject)},
{CKA_ID, id, sizeof(id)},
{CKA_SENSITIVE, &true, sizeof(true)},
{CKA_DERIVE, &true, sizeof(true)},
{CKA_PRIME, prime, sizeof(prime)},
{CKA_SUBPRIME, subprime, sizeof(subprime)},
{CKA_BASE, base, sizeof(base)},
{CKA_VALUE, value, sizeof(value)}

2
10.10 Secret key objects

Secret key objects (object class CKO_SECRET_KEY) hold secret keys. This version of
Cryptoki recognizes the following types of secret key: generic, RC2, RC4, RC5, DES,
DES2, DES3, CAST, CAST3, CAST128 (also known as CAST5), IDEA, CDMF,
SKIPJACK, BATON, and JUNIPER. The following table defines the attributes common
to all secret keys, in addition to the common attributes listed in Table 14Fable-14, Table
18Fable 18TFable 14 and Table 24Fable 24Fable 19:

Copyright © 1994-1999 RSA Laboratories

Page 97

Table 393932, Common Secret Key Attributes

Attribute Datatype Meaning

CKA_SENSITIVE® (see below) CK_BBOOL | TRUE if object is sensitive
(default FALSE)

CKA_ENCRYPT® CK_BBOOL | TRUE if key supports
encryption®

CKA_DECRYPT® CK_BBOOL | TRUE if key supports
decryption®

CKA_SIGN® CK_BBOOL | TRUE if key supports

signatures (i.e., authentication
codes) where the signatureis an
appendix to the data’

CKA_VERIFY® CK_BBOOL | TRUE if key supports
verification (i.e., of
authentication codes) where the
signature is an appendix to the
data’

CKA_WRAP® CK_BBOOL | TRUE if key supports wrapping
(i.e., can be used to wrap other

keys)®

CKA_UNWRAP® CK_BBOOL | TRUE if key supports
unwrapping (i.e., can be used to
unwrap other keys)®

CKA_EXTRACTABLE® (seebelow) | CK_BBOOL | TRUE if key is extractable’

CKA_ALWAYS SENSITIVE**® CK_BBOOL | TRUE if key has always had the
CKA_SENSITIVE attribute set
to TRUE

CKA_NEVER_EXTRACTABLEz""6 CK_BBOOL | TRUE if key has never had the
CKA_EXTRACTABLE
attribute set to TRUE

After an object is created, the CKA_SENSITIVE attribute may be changed, but only to
the value TRUE. Similarly, after an object is created, the CKA_EXTRACTABLE
attribute may be changed, but only to the value FALSE. Attempts to make other changes
to the vaues of these attributes should return the error code
CKR_ATTRIBUTE_READ_ONLY.

If the CKA_SENSITIVE attribute is TRUE, or if the CKA_EXTRACTABLE attribute
is FALSE, then certain attributes of the secret key cannot be revealed in plaintext outside
the token. Which attributes these are is specified for each type of secret key in the
attribute table in the section describing that type of key.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 98

If the CKA_EXTRACTABLE attribute is FALSE, then the key cannot be wrapped.

10.10.1 Generic secret key objects

Generic secret key objects (object class CKO_SECRET_KEY, key type
CKK_GENERIC_SECRET) hold generic secret keys. These keys do not support
encryption, decryption, signatures or verification; however, other keys can be derived
from them. The following table defines the generic secret key object attributes, in
addition to the common attributes listed in Table 14Fable-14, Table 18Fable 18Fable-14,
Table 24Fable 24Fable 19, and Table 39Fable 39Fable 32:

Table 404033, Generic Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"*®/ Byte array Key value (arbitrary
length)

CKA_VALUE_LEN®*® | CK_ULONG | Length in bytes of key
value

The following is a sample template for creating a generic secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_GENERI C_SECRET;
CK_UTF8CHAR label[] = “A generic secret key object”;
CK_BYTE value[] ={...};

CK_BBOOL true = TRUE;

CK_ATTRIBUTE template[] = {

{CKA _CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},

{CKA_LABEL, label, sizeof(label)-1},

{CKA_DERIVE, &true, sizeof(true)},

{CKA_VALUE, value, sizeof(value)}

¥
10.10.2 RC2 secret key objects

RC2 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC2) hold
RC2 keys. The following table defines the RC2 secret key object attributes, in addition to
the common attributes listed in Table 14Fable-14, Table 18Table-18Table- 14, Table
24T able 24T able 19, and Table 39Fable 39Fable 32:

Copyright © 1994-1999 RSA Laboratories

Page 99

Table 414134, RC2 Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"*®’ Byte array Key value (1to 128
bytes)

CKA_VALUE_LEN®*® | CK_ULONG | Length in bytes of key
value

The following is a sample template for creating an RC2 secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RCZ;
CK_UTF8CHAR label[] = “An RC2 secret key object”;
CK_BYTE value[] ={...};

CK_BBOOL true = TRUE;

CK_ATTRIBUTE template[] = {

{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},

{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}

¥
10.10.3 RC4 secret key objects

RC4 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC4) hold
RC4 keys. The following table defines the RC4 secret key object attributes, in addition to
the common attributes listed in Table 14Fable-14, Table 18Table-18Table- 14, Table
24T able 24T able 19, and Table 39Fable 39Fable 32:

Table 424235, RC4 Secret Key Object

Attribute Data type Meaning

CKA_VALUE"*®/ Byte array Key value (1 to 256
bytes)

CKA_VALUE_LEN®*® | CK_ULONG | Length in bytes of key
value

The following is a sample template for creating an RC4 secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC4;
CK_UTF8CHAR label[] = “An RC4 secret key object”;
CK_BYTE value[] ={...};

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 100

CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA _TOKEN, &true, sizeof(true)},
| { CKA_LABEL, | abel, sizeof(label)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

b
10.10.4 RCS5 secret key objects

RC5 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC5) hold

RC5 keys. The following table defines the RC5 secret key object attributes, in addition to
\ the common attributes listed in Table 14Table-14, Table 18TFable-18Table-14, Table
‘ 24T able 24T able-19, and Table 39Fable 39T able-32:

‘ Table 434336, RC4 Secret Key Object

Attribute Data type M eaning

CKA_VALUE*®7 Byte array Key value (0 to 255
bytes)

CKA_VALUE_LEN**® | CK_ULONG | Length in bytes of key
value

Thefollowing is a sample template for creating an RC5 secret key object:

CK_OBJECT _CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC5;
| CK_UTF8CHAR label[] = “An RC5 secret key object”;
CK_BYTE value[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
| {CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}

h
10.10.5 DES secret key objects

DES secret key objects (object class CKO_SECRET_KEY, key type CKK_DES) hold
single-length DES keys. The following table defines the DES secret key object attributes,

| in addition to the common attributes listed in Table 14Fable 14, Table 18Fable 18Fable
14, Table 24T able 24Fable 19, and Table 39Fable 39Fable 32:

Copyright © 1994-1999 RSA Laboratories

Page 101

Table 444437, DES Secret Key Object

Attribute Datatype | Meaning
CKA_VALUE"®" | Bytearray | Key value (always 8 bytes
long)

DES keys must always have their parity bits properly set as described in FIPS PUB 46-2.
Attempting to create or unwrap a DES key with incorrect parity will return an error.

The following is a sample template for creating a DES secret key object:

CK_OBJECT _CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_UTF8CHAR label[] = “A DES secret key object”;
CK_BYTE value[8] ={...};

CK_BBOOL true = TRUE;

CK_ATTRIBUTE template[] = {

{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},

{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},

{CKA _VALUE, value, sizeof(value)}

I

10.10.6 DES2 secret key objects

DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2)
hold double-length DES keys. The following table defines the DES2 secret key object
attributes, in addition to the common attributes listed in Table 14Table-14Table-14, Table
18Table- 18T able 14, Table 24Fable 24Fable-19, and Table 39Fable 39TFable 32:

Table 454538, DES2 Secret Key Object Attributes

Attribute Datatype | Meaning
CKA_VALUE"®" | Bytearray | Key value (aways 16 bytes
long)

DES2 keys must always have their parity bits properly set as described in FIPS PUB 46-2
(i.e., each of the DES keys comprising a DES2 key must have its parity bits properly set).
Attempting to create or unwrap a DES2 key with incorrect parity will return an error.

The following is a sample template for creating a double-length DES secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 102

CK_KEY_TYPE keyType = CKK_DES2;
| CK_UTF8CHAR label[] = “A DES2 secret key object”;
CK_BYTE value[16] ={...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
{CKA _CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
| {CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}

¥
10.10.7 DES3 secret key objects

DES3 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3)
hold triple-length DES keys. The following table defines the DES3 secret key object
attributes, in addition to the common attributes listed in Table 14Fable-14, Table 18T able
18Table14, Table 24Table 24Fable-19, and Table 39Fable 39Fable 32:

Table 464639, DES3 Secret Key Object Attributes

Attribute Datatype | Meaning
CKA_VALUE"®" | Bytearray | Key value (aways 24 bytes
long)

DES3 keys must always have their parity bits properly set as described in FIPS PUB 46-2
(i.e., each of the DES keys comprising a DES3 key must have its parity bits properly set).
Attempting to create or unwrap a DES3 key with incorrect parity will return an error.

Thefollowing is a sample template for creating a triple-length DES secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES3;
| CK_UTF8CHAR label[] = “A DESS3 secret key object”;
CK_BYTE value[24] ={...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
| {CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}

I

Copyright © 1994-1999 RSA Laboratories

Page 103

10.10.8 CAST secret key objects

CAST secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST)
hold CAST keys. The following table defines the CAST secret key object attributes, in
addition to the common attributes listed in Table 14Fable-14, Table 18Fable 18Fable 14,
Table 24Fable 24Fable 19, and Table 39Fable 39Fable 32:

Table 474740, CAST Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"*®/ Byte array Key value (1 to 8 bytes)

CKA_VALUE_LEN®*® | CK_ULONG | Length in bytes of key
value

Thefollowing is a sample template for creating a CAST secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAST;
CK_UTF8CHAR label[] = “A CAST secret key object”;
CK_BYTE value[] ={...};

CK_BBOOL true = TRUE;

CK_ATTRIBUTE template[] = {

{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},

{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}

¥
10.10.9 CAST 3 secret key objects

CAST3 secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST3)
hold CAST3 keys. The following table defines the CAST 3 secret key object attributes, in
addition to the common attributes listed in Table 14Fable-14, Table 18Fable 18Fable- 14,
Table 24Fable 24Fable 19, and Table 39Fable 39Fable 32:

Table 484841, CAST 3 Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"*®/ Byte array Key value (1 to 8 bytes)

CKA_VALUE_LEN®**® | CK_ULONG | Length in bytes of key
value

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Thefollowing is a sample template for creating a CAST3 secret key object:

CK_OBJECT _CLASS cl ass = CKO _SECRET_KEY,;
CK_KEY_TYPE keyType = CKK CAST3;
| CK_UTF8CHAR label[] = “A CAST3 secret key object”;
CK_BYTE value[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
| {CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}

h
10.10.10 CAST128 (CAST5) secret key objects

CAST128 (also known as CAST5) secret key objects

104

class

CKO_SECRET_KEY, key type CKK_CAST128 or CKK_CAST5) hold CAST128
keys. The following table defines the CAST128 secret key object attributes, in addition
| to the common attributes listed in Table 14Fable-14, Table 18Fable 18Fable 14, Table

‘ 24T able 24Fable19, and Table 39Fable-39Fable-32:

‘ Table 494942, CAST 128 (CAST5) Secret Key Object Attributes

Attribute Data type M eaning

CKA_VALUE®/ Byte array Key value (1to 16
bytes)

CKA_VALUE_LEN**® | CK_ULONG | Length in bytes of key
value

The following is a sample template for creating a CAST128 (CAST5) secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAST128;
| CK_UTF8CHAR label[] = “A CAST128 secret key object”;
CK_BYTE value[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},

Copyright © 1994-1999 RSA Laboratories

Page 105

{CKA _TOKEN, &true, sizeof(true)},

{ CKA_LABEL, | abel, sizeof(label)-1}, |
{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

b
10.10.11 IDEA secret key objects

IDEA secret key objects (object class CKO_SECRET_KEY, key type CKK_IDEA)
hold IDEA keys. The following table defines the IDEA secret key object attributes, in
addition to the common attributes listed in Table 14Fable 14, Table 18Fable 18Fable 14, |
Table 24T able24Fable-19, and Table 39Fable-39Fable-32: ‘

Table 505043, IDEA Secret Key Object ‘

Attribute Datatype | Meaning
CKA_VALUE™®" | Bytearray | Key value (adways 16 bytes
long)

The following is a sample template for creating an IDEA secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_| DEA;
CK_UTF8CHAR label[] = “An IDEA secret key object”;
CK_BYTE value[16] ={...};

CK_BBOOL true = TRUE;

CK_ATTRIBUTE template[] = {

{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},

{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}

¥
10.10.12 CDMF secret key objects

CDMF secret key objects (object class CKO_SECRET_KEY, key type CKK_CDMF)
hold single-length CDMF keys. The following table defines the CDMF secret key object
attributes, in addition to the common attributes listed in Table 14Fable-14, Table 18Fable
18Table-14, Table 24Table 24Fable-19, and Table 39Fable 39Fable 32:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 106

Table 515144, CDMF Secret Key Object

Attribute Datatype | Meaning
CKA_VALUE"®" | Bytearray | Key value (always 8 bytes
long)

CDMF keys must always have their parity bits properly set in exactly the same fashion
described for DES keysin FIPS PUB 46-2. Attempting to create or unwrap a CDMF key
with incorrect parity will return an error.

Thefollowing is a sample template for creating a CDMF secret key object:

CK_OBJECT _CLASS cl ass = CKO _SECRET_KEY,;
CK_KEY_TYPE keyType = CKK_CDMF;
CK_UTF8CHAR label[] = “A CDMF secret key object”;
CK_BYTE value[8] ={...};

CK_BBOOL true = TRUE;

CK_ATTRIBUTE template[] = {

{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},

{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}

h
10.10.13 SKIPJACK secret key objects

SKIPJACK secret key objects (object class CKO_SECRET_KEY, key type
CKK_SKIPJACK) holds a single-length MEK or a TEK. The following table defines
the SKIPJACK secret key object attributes, in addition to the common attributes listed in
Table 14Table-14, Table 18Fable-18Table-14, Table 24Fable24Fable-19, and Table
39Table 39Table 32

Table 525245, SKIPJACK Secret Key Object

Attribute Datatype | Meaning
CKA_VALUE™®" | Bytearray | Key value (adways 12 bytes
long)

Copyright © 1994-1999 RSA Laboratories

Page 107

SKIPJACK keys have 16 checksum bits, and these bits must be properly set. Attempting
to create or unwrap a SKIPJACK key with incorrect checksum bits will return an error.

It is not clear that any tokens exist (or will ever exist) which permit an application to
create a SKIPJACK key with a specified value. Nonetheless, we provide templates for
doing so.

The following is asample template for creating a SKIPJACK MEK secret key object:

CK_OBJECT _CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_SKI PJACK;
CK_UTF8CHAR label[] = “A SKIPJACK MEK secret key object”;
CK_BYTE value[12] ={...};

CK_BBOOL true = TRUE;

CK_ATTRIBUTE template[] = {

{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},

{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}

h
Thefollowing is asample template for creating a SKIPJACK TEK secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_SKIPJACK;
CK_UTF8CHAR label[] = “A SKIPJACK TEK secret key object”;
CK_BYTE value[12] ={...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_WRAP, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 108

10.10.14 BATON secret key objects

BATON secret key objects (object class CKO_SECRET_KEY, key type
CKK_BATON) hold single-length BATON keys. The following table defines the
BATON secret key object attributes, in addition to the common attributes listed in Table
14Table-14, Table 18Fable-18TFable-14, Table 24Table-24Fable-19, and Table 39Fable
39Table 32:

Table 535346, BATON Secret Key Object

Attribute Datatype | Meaning
CKA_VALUE"®" | Bytearray | Key value (always 40 bytes
long)

BATON keys have 160 checksum bits, and these bits must be properly set. Attempting to
create or unwrap aBATON key with incorrect checksum bits will return an error.

It is not clear that any tokens exist (or will ever exist) which permit an application to
create a BATON key with a specified value. Nonetheless, we provide templates for doing
0.

Thefollowing is asample template for creating a BATON MEK secret key object:

CK_OBJECT _CLASS cl ass = CKO _SECRET_KEY,;
CK_KEY_TYPE keyType = CKK BATON,
CK_UTF8CHAR label[] = “A BATON MEK secret key object”;
CK_BYTE value[40] ={...};

CK_BBOOL true = TRUE;

CK_ATTRIBUTE template[] = {

{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},

{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}

h
The following is asample template for creating a BATON TEK secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_BATON;
CK_UTF8CHAR label[] = “A BATON TEK secret key object”;
CK_BYTE value[40] ={...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {

{CKA_CLASS, &class, sizeof(class)},

{CKA_KEY_TYPE, &keyType, sizeof(keyType)},

Copyright © 1994-1999 RSA Laboratories

Page 109

{CKA _TOKEN, &true, sizeof(true)},

{ CKA_LABEL, | abel, sizeof(label)-1}, |
{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA WRAP, &true, sizeof(true)},

{CKA_VALUE, val ue, sizeof(value)}

1
10.10.15 JUNIPER secret key objects

JUNIPER secret key objects (object class CKO_SECRET_KEY, key type
CKK_JUNIPER) hold single-length JUNIPER keys. The following table defines the
JUNIPER secret key object attributes, in addition to the common attributes listed in Table
14Table-14, Table 18Fable-18Fable-14, Table 24Fable24Fable-19, Table 39Fable
39Fable32:

Table 545447, JUNIPER Secret Key Object

Attribute Datatype | Meaning
CKA_VALUE"®" | Bytearray | Key value (aways 40 bytes
long)

JUNIPER keys have 160 checksum bits, and these bits must be properly set. Attempting
to create or unwrap a JUNIPER key with incorrect checksum bits will return an error.

It is not clear that any tokens exist (or will ever exist) which permit an application to
create a JUNIPER key with a specified value. Nonetheless, we provide templates for
doing so.

Thefollowing is a sample template for creating a JUNIPER MEK secret key object:

CK_OBJECT _CLASS cl ass = CKO _SECRET_KEY,;
CK_KEY_TYPE keyType = CKK_JUNI PER;
CK_UTF8CHAR label[] = “A JUNIPER MEK secret key object”;
CK_BYTE value[40] ={...};

CK_BBOOL true = TRUE;

CK_ATTRIBUTE template[] = {

{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},

{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},

{CKA _VALUE, value, sizeof(value)}

h
The following is asample template for creating a JUNIPER TEK secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 110

CK_KEY_TYPE keyType = CKK_JUNI PER;

CK_UTF8CHAR label[] = “A JUNIPER TEK secret key object”;

CK_BYTE value[40] ={...};

CK_BBOOL true = TRUE;

CK_ATTRIBUTE template[] = {
{CKA _CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_WRAP, &true, sizeof(true)},
{CKA _VALUE, value, sizeof(value)}

Copyright © 1994-1999 RSA Laboratories

11. Functions

Page 111

Cryptoki’s functions are organized into the following categories:

general-purpose functions (4 functions)

slot and token management functions (9 functions)

session management functions (8 functions)
object management functions (9 functions)
encryption functions (4 functions)
decryption functions (4 functions)

message digesting functions (5 functions)

signing and MACing functions (6 functions)

functions for verifying signatures and MACs (6 functions)

dual-purpose cryptographic functions (4 functions)

key management functions (5 functions)

random number generation functions (2 functions)

parallel function management functions (2 functions)

In addition to these 68 functions in the Cryptoki Version 2012.1 API proper, Cryptoki |
can use application-supplied callback functions to notify an application of certain events,
and can aso use application-supplied functions to handle mutex objects for safe multi-
threaded library access.

Execution of a Cryptoki function call isin general an al-or-nothing affair, i.e., afunction
call accomplishes either its entire goal, or nothing at all.

If a Cryptoki function executes successfully, it returns the value CKR_OK.

If a Cryptoki function does not execute successfully, it returns some value other than
CKR_OK, and the token is in the same state as it was in prior to the function call. If
the function call was supposed to modify the contents of certain memory addresses on
the host computer, these memory addresses may have been modified, despite the

failure of the function.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 112

* In unusua (and extremely unpleasant!) circumstances, a function can fail with the
return value CKR_GENERAL_ERROR. When this happens, the token and/or host
computer may be in an inconsistent state, and the goals of the function may have been
partialy achieved.

There are a small number of Cryptoki functions whose return values do not behave
precisely as described above; these exceptions are documented individually with the
description of the functions themselves.

A Cryptoki library need not support every function in the Cryptoki API. However, even

an unsupported function must have a “stub” in the library which simply returns the value
CKR_FUNCTION_NOT_SUPPORTED. The function’s entry in the library’s
CK_FUNCTION_LIST structure (as obtained &y GetFunctionList) should point to

this stub function (see Section 9.6).

11.1 Function return values

The Cryptoki interface possesses a large number of functions and return values. In
Section 11.1, we enumerate the various possible return values for Cryptoki functions;
most of the remainder of Section 11 details the behavior of Cryptoki functions, including

what values each of them may return.

Because of the complexity of the Cryptoki specification, it is recommended that Cryptoki
applications attempt to give some leeway when interpreting Cryptoki functions’ return
values. We have attempted to specify the behavior of Cryptoki functions as completely as
was feasible; nevertheless, there are presumably some gaps. For example, it is possible
that a particular error code which might apply to a particular Cryptoki function is
unfortunately not actually listed in the description of that function as a possible error
code. It is conceivable that the developer of a Cryptoki library might nevertheless permit
his/her implementation of that function to return that error code. It would clearly be
somewhat ungraceful if a Cryptoki application using that library were to terminate by
abruptly dumping core upon receiving that error code for that function. It would be far
preferable for the application to examine the function’s return value, see that it indicates
some sort of error (even if the application doesn’t know precdady kind of error), and
behave accordingly.

See Section 11.1.8 for some specific details on how a developer might attempt to make an
application that accommodates a range of behaviors from Cryptoki libraries.

1111 Universal Cryptoki function return values

Any Cryptoki function can return any of the following values:

Copyright © 1994-1999 RSA Laboratories

Page 113

« CKR_GENERAL_ERROR: Some horrible, unrecoverable error has occurred. In the
worst case, it is possible that the function only partially succeeded, and that the
computer and/or token isin an inconsistent state.

* CKR_HOST_MEMORY: The computer that the Cryptoki library is running on has
insufficient memory to perform the requested function.

« CKR_FUNCTION_FAILED: The requested function could not be performed, but
detailed information about why not is not available in this error return. If the failed
function uses a session, it is possible that the CK_SESSION_INFO structure that can
be obtained by calling C_GetSessionInfo will hold useful information about what
happened in its ulDeviceError field. In any event, although the function call failed,
the situation is not necessarily totally hopeless, as it is likely to be when
CKR_GENERAL_ERROR is returned. Depending on what the root cause of the
error actualy was, it is possible that an attempt to make the exact same function call
again would succeed.

* CKR_OK: The function executed successfully. Technicaly, CKR_OK is not quite a
“universal” return value; in particular, the legacy functidbsGetFunctionStatus
andC_CancelFunction (see Section 11.16) cannot return CKR_OK.

The relative priorities of these errors are in the order listed almye,if either of
CKR_GENERAL_ERROR or CKR_HOST_MEMORY would be an appropriate error
return, then CKR_GENERAL_ERROR should be returned.

1112 Cryptoki function return values for functions that use a session
handle

Any Cryptoki function that takes a session handle as one of its argumentsary
Cryptoki function except fo€_Initialize, C_Finalize, C_GetInfo, C_GetFunctionList,
C _GetSlotList, C_GetSlotlInfo, C_GetTokenlnfo, C_WaitFor SlotEvent,
C_GetMechanismList, C_GetMechanisminfo, C_InitToken, C_OpenSession, and
C_CloseAllSessions) can return the following values:

» CKR_SESSION_HANDLE_INVALID: The specified session handle was invaiid
the time that the function was invoked. Note that this can happen if the session’s
token is removed before the function invocation, since removing a token closes all
sessions with it.

« CKR_DEVICE_REMOVED: The token was removed from its stiiring the
execution of the function.

* CKR_SESSION_CLOSED: The session was clodadng the execution of the
function. Note that, as stated in Section 6.6.6, the behavior of Cryptohilésined if
multiple threads of an application attempt to access a common Cryptoki session

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 114

simultaneously. Therefore, there is actually no guarantee that a function invocation

could ever return the value CKR_SESSION_CLOSED—if one thread is using a
session when another thread closes that session, that is an instance of multiple threads
accessing a common session simultaneously.

The relative priorities of these errors are in the order listed almye,if either of
CKR_SESSION_HANDLE_INVALID or CKR_DEVICE_REMOVED would be an
appropriate error return, then CKR_SESSION_HANDLE_INVALID should be returned.

In practice, it is often not crucial (or possible) for a Cryptoki library to be able to make a
distinction between a token being remouasiore a function invocation and a token
being removedluring a function execution.

11.1.3 Cryptoki function return valuesfor functionsthat use a token

Any Cryptoki function that uses a particular tokem.(any Cryptoki function except for
C_Initialize, C_Finalize, C_Getinfo, C_GetFunctionList, C_GetSlotList,
C_GetSlotInfo, or C_WaitFor SlotEvent) can return any of the following values:

« CKR_DEVICE_MEMORY: The token does not have sufficient memory to perform
the requested function.

« CKR_DEVICE_ERROR: Some problem has occurred with the token and/or slot.
This error code can be returned by more than just the functions mentioned above; in
particular, it is possible fa€C_GetSlotInfo to return CKR_DEVICE_ERROR.

« CKR_TOKEN_NOT_PRESENT: The token was not present in itsaldihe time
that the function was invoked.

« CKR_DEVICE_REMOVED: The token was removed from its stiiring the
execution of the function.

The relative priorities of these errors are in the order listed almye,if either of
CKR_DEVICE_MEMORY or CKR_DEVICE_ERROR would be an appropriate error
return, then CKR_DEVICE_MEMORY should be returned.

In practice, it is often not critical (or possible) for a Cryptoki library to be able to make a
distinction between a token being remouasiore a function invocation and a token
being removedluring a function execution.

1114 Special return value for application-supplied callbacks

There is a special-purpose return value which is not returned by any function in the actual
Cryptoki API, but which may be returned by an application-supplied callback function. It
Is:

Copyright © 1994-1999 RSA Laboratories

Page 115

* CKR_CANCEL: When a function executing in serial with an application decides to
give the application a chance to do some work, it calls an application-supplied
function with a CKN_SURRENDER callback (see Section 11.17). If the callback
returns the value CKR_CANCEL, then the function aborts and returns
CKR_FUNCTION_CANCELED.

11.15 Special return values for mutex-handling functions

There are two other special-purpose return values which are not returned by any actual
Cryptoki functions. These values may be returned by application-supplied mutex-
handling functions, and they may safely be ignored by application developers who are not
using their own threading model. They are:

« CKR_MUTEX_BAD: This error code can be returned by mutex-handling functions
who are passed a bad mutex object as an argument. Unfortunately, it is possible for
such a function not to recognize a bad mutex object. There is therefore no guarantee
that such afunction will successfully detect bad mutex objects and return this value.

* CKR_MUTEX_NOT_LOCKED: Thiserror code can be returned by mutex-unlocking
functions. It indicates that the mutex supplied to the mutex-unlocking function was
not locked.

11.1.6 All other Cryptoki function return values

Descriptions of the other Cryptoki function return values follow. Except as mentioned in
the descriptions of particular error codes, there are in general no particular priorities
among the errors listed below, i.e., if more than one error code might apply to an
execution of afunction, then the function may return any applicable error code.

* CKR_ARGUMENTS BAD: Thisis arather generic error code which indicates that
the arguments supplied to the Cryptoki function were in some way not appropriate.

* CKR_ATTRIBUTE_READ_ONLY: An attempt was made to set a value for an
attribute which may not be set by the application, or which may not be modified by
the application. See Section 10.1 for more information.

« CKR_ATTRIBUTE_SENSITIVE: An attempt was made to obtain the value of an
attribute of an object which cannot be satisfied because the object is either sensitive or
unextractable.

e CKR_ATTRIBUTE_TYPE_INVALID: An invalid attribute type was specified in a
template. See Section 10.1 for more information.

« CKR_ATTRIBUTE_VALUE_INVALID: An invalid value was specified for a
particular attribute in atemplate. See Section 10.1 for more information.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 116

* CKR _BUFFER _TOO_SMALL: The output of the function is too large to fit in the
supplied buffer.

» CKR_CANT_LOCK: This value can only be returned by C_lInitialize. It means that
the type of locking requested by the application for thread-safety is not available in
this library, and so the application cannot make use of this library in the specified
fashion.

* CKR_CRYPTOKI_ALREADY _INITIALIZED: This value can only be returned by
C_Initialize. It means that the Cryptoki library has aready been initidized (by a
previous call to C_Initialize which did not have amatching C_Finalize cal).

* CKR_CRYPTOKI_NOT_INITIALIZED: This vaue can be returned by any function
other than C_lInitialize and C_GetFunctionList. It indicates that the function cannot
be executed because the Cryptoki library has not yet been initialized by a call to
C_Initialize.

* CKR_DATA_INVALID: The plaintext input data to a cryptographic operation is
invalid. At present, this error only applies to the CKM_RSA_X_ 509 mechanism; it
is returned when plaintext is supplied that has the same number of bytes as the RSA
modulus and is numericaly at least as large as the modulus. This return value has
lower priority than CKR_DATA_LEN_RANGE.

» CKR_DATA_LEN_RANGE: The plaintext input data to a cryptographic operation
has a bad length. Depending on the operation’s mechanism, this could mean that the
plaintext data is too short, too long, or is not a multiple of some particular blocksize.
This return value has higher priority than CKR_DATA_INVALID.

* CKR_ENCRYPTED_DATA_INVALID: The encrypted input to a decryption
operation has been determined to be invalid ciphertext. This return value has lower
priority than CKR_ENCRYPTED_DATA LEN_RANGE.

* CKR_ENCRYPTED_DATA_LEN_RANGE: The ciphertext input to a decryption
operation has been determined to be invalid ciphertext solely on the basis of its
length. Depending on the operation’s mechanism, this could mean that the ciphertext
Is too short, too long, or is not a multiple of some particular blocksize. This return
value has higher priority than CKR_ENCRYPTED_DATA_INVALID.

« CKR_FUNCTION_CANCELED: The function was canceled in mid-execution. This
happens to a cryptographic function if the function mak&K& SURRENDER
application callback which returns CKR_CANCEL (see CKR_CANCEL).

e CKR_FUNCTION_NOT_PARALLEL: There is currently no function executing in

parallel in the specified session. This is a legacy error code which is only returned by
the legacy function€_GetFunctionStatus andC_CancelFunction.

Copyright © 1994-1999 RSA Laboratories

Page 117

CKR_FUNCTION_NOT_SUPPORTED: The requested function is not supported by
this Cryptoki library. Even unsupported functions in the Cryptoki API should have a
“stub” in the library; this stub should simply return the value
CKR_FUNCTION_NOT_SUPPORTED.

CKR_INFORMATION_SENSITIVE: The information requested could not be
obtained because the token considers it sensitive, and is not able or willing to reveal
it.

CKR_KEY_CHANGED: This value is only returned 16/ SetOperationState. It
indicates that one of the keys specified is not the same key that was being used in the
original saved session.

CKR_KEY_FUNCTION_NOT_PERMITTED: An attempt has been made to use a
key for a cryptographic purpose that the key's attributes are not set to allow it to do.
For example, to use a key for performing encryption, that key must have its
CKA_ENCRYPT attribute set to TRUE (the fact that the key must have a
CKA_ENCRYPT attribute implies that the key cannot be a private key). This return
value has lower priority than CKR_KEY_TYPE_INCONSISTENT.

CKR_KEY_HANDLE_INVALID: The specified key handle is not valid. It may be
the case that the specified handle is a valid handle for an object which is not a key.
We reiterate here that 0 is never a valid key handle.

CKR_KEY_INDIGESTIBLE: This error code can only be returnedcbyigestK ey.

It indicates that the value of the specified key cannot be digested for some reason
(perhaps the key isn’'t a secret key, or perhaps the token simply can’t digest this kind
of key).

CKR_KEY_NEEDED: This value is only returned Iy SetOperationState. It
indicates that the session state cannot be restored beCaB8eOperationState

needs to be supplied with one or more keys that were being used in the original saved
session.

CKR_KEY_NOT_NEEDED: An extraneous key was supplied to
C_SetOperationState. For example, an attempt was made to restore a session that
had been performing a message digesting operation, and an encryption key was
supplied.

CKR_KEY_NOT_WRAPPABLE: Although the specified private or secret key does
not have its CKA UNEXTRACTABLE attribute set to TRUE, Cryptoki (or the
token) is unable to wrap the key as requested (possibly the token can only wrap a
given key with certain types of keys, and the wrapping key specified is not one of
these types). Compare with CKR_KEY_UNEXTRACTABLE.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 118

« CKR_KEY_SIZE RANGE: Although the requested keyed cryptographic operation
could in principle be carried out, this Cryptoki library (or the token) is unable to
actually do it because the supplied key's size is outside the range of key sizes that it
can handle.

« CKR_KEY_TYPE_INCONSISTENT: The specified key is not the correct type of key
to use with the specified mechanism. This return value has a higher priority than
CKR_KEY_FUNCTION_NOT_PERMITTED.

« CKR_KEY_UNEXTRACTABLE: The specified private or secret key can’'t be
wrapped because its CKA_UNEXTRACTABLE attribute is set to TRUE. Compare
with CKR_KEY_NOT_WRAPPABLE.

* CKR_MECHANISM_INVALID: An invalid mechanism was specified to the
cryptographic operation. This error code is an appropriate return value if an unknown
mechanism was specified or if the mechanism specified cannot be used in the selected
token with the selected function.

* CKR_MECHANISM_PARAM_INVALID: Invalid parameters were supplied to the
mechanism specified to the cryptographic operation. Which parameter values are
supported by a given mechanism can vary from token to token.

« CKR_NEED_TO_CREATE_THREADS: This value can only be returned by
C_Initialize. Itis returned when two conditions hold:

1. The application calle€_Initialize in a way which tells the Cryptoki library
that application threads executing calls to the library cannot use native
operating system methods to spawn new threads.

2. The library cannot function properly without being able to spawn new threads
in the above fashion.

e CKR_NO_EVENT: This value can only be returned GyGetSlotEvent. It is
returned wherC_GetSlotEvent is called in non-blocking mode and there are no new
slot events to return.

« CKR_OBJECT_HANDLE_INVALID: The specified object handle is not valid. We
reiterate here that O is never a valid object handle.

» CKR_OPERATION_ACTIVE: There is already an active operation (or combination
of active operations) which prevents Cryptoki from activating the specified operation.
For example, an active object-searching operation would prevent Cryptoki from
activating an encryption operation with Encryptinit. Or, an active digesting
operation and an active encryption operation would prevent Cryptoki from activating
a signature operation. Or, on a token which doesn’t support simultaneous dual
cryptographic operations in a session (see the description of the

Copyright © 1994-1999 RSA Laboratories

Page 119

CKF_DUAL_CRYPTO_OPERATIONS flag in the CK_TOKEN_INFO
structure), an active signature operation would prevent Cryptoki from activating an
encryption operation.

CKR_OPERATION_NOT _INITIALIZED: There is no active operation of an
appropriate type in the specified session. For example, an application cannot call
C_Encrypt in a session without having called C_Encryptlnit first to activate an
encryption operation.

CKR_PIN_EXPIRED: The specified PIN has expired, and cannot be used to
authenticate the user to the token. Whether or not the normal user’s PIN on a token
ever expires varies from token to token.

CKR_PIN_INCORRECT: The specified PIN is incorraat,, does not match the PIN
stored on the token. More generally-- when authentication to the token involves
something other than a PIN-- the attempt to authenticate the user has failed.

CKR_PIN_INVALID: The specified PIN has invalid characters in it. This return
code only applies to functions which attempt to set a PIN.

CKR_PIN_LEN_RANGE: The specified PIN is too long or too short. This return
code only applies to functions which attempt to set a PIN.

CKR_PIN_LOCKED: The specified PIN is “locked”, and cannot be used. That is,
because some particular number of failed authentication attempts has been reached,
the token is unwilling to permit further attempts at authentication. Depending on the
token, the specified PIN may or may not remain locked indefinitely.

CKR_RANDOM_NO_RNG: This value can be returned ®ySeedRandom and
C_GenerateRandom. It indicates that the specified token doesn’t have a random
number generator. This return value has higher priority than
CKR_RANDOM_SEED_NOT_SUPPORTED.

CKR_RANDOM_SEED_NOT_SUPPORTED: This value can only be returned by
C_SeedRandom. It indicates that the token’s random number generator does not
accept seeding from an application. This return value has lower priority than
CKR_RANDOM_NO_RNG.

CKR_SAVED_STATE_INVALID: This value can only be returned by
C_SetOperationState. It indicates that the supplied saved cryptographic operations
state is invalid, and so it cannot be restored to the specified session.

CKR_SESSION_COUNT: This value can only be returnedCb@penSession. It

indicates that the attempt to open a session failed, either because the token has too
many sessions already open, or because the token has too many read/write sessions
already open.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 120

» CKR_SESSION_EXISTS: This value can only be returned by C InitToken. It
indicates that a session with the token is aready open, and so the token cannot be
initialized.

+ CKR_SESSION_PARALLEL_NOT_SUPPORTED: The specified token does not
support parallel sessions. This is a legacy error code—in Cryptoki Version 2.01 and
up, no token supports parallel sessions.
CKR_SESSION_PARALLEL_NOT_SUPPORTED can only be returned by
C_OpenSession, and it is only returned whe@_OpenSession is called in a
particular [deprecated] way.

e CKR_SESSION_READ_ONLY: The specified session was unable to accomplish the
desired action because it is a read-only session. This return value has lower priority
than CKR_TOKEN_WRITE_PROTECTED.

» CKR_SESSION_READ_ONLY_EXISTS: A read-only session already exists, and so
the SO cannot be logged in.

e CKR_SESSION_READ WRITE_SO EXISTS: A read/write SO session already
exists, and so a read-only session cannot be opened.

« CKR_SIGNATURE_LEN_RANGE: The provided signature/MAC can be seen to be
invalid solely on the basis of its length. This return value has higher priority than
CKR_SIGNATURE_INVALID.

* CKR_SIGNATURE_INVALID: The provided signature/MAC is invalid. This return
value has lower priority than CKR_SIGNATURE_LEN_RANGE.

« CKR_SLOT_ID_INVALID: The specified slot ID is not valid.

« CKR_STATE_UNSAVEABLE: The cryptographic operations state of the specified
session cannot be saved for some reason (possibly the token is simply unable to save
the current state). This return value has lower priority than
CKR_OPERATION_NOT_INITIALIZED.

« CKR_TEMPLATE_INCOMPLETE: The template specified for creating an object is
incomplete, and lacks some necessary attributes. See Section 10.1 for more
information.

« CKR_TEMPLATE_INCONSISTENT: The template specified for creating an object
has conflicting attributes. See Section 10.1 for more information.

« CKR_TOKEN_NOT_RECOGNIZED: The Cryptoki library and/or slot does not
recognize the token in the slot.

Copyright © 1994-1999 RSA Laboratories

Page 121

CKR_TOKEN_WRITE_PROTECTED: The requested action could not be performed
because the token is write-protected. This return value has higher priority than
CKR_SESSION_READ_ONLY.

CKR_UNWRAPPING_KEY_HANDLE_INVALID: This vaue can only be returned
by C_UnwrapKey. It indicates that the key handle specified to be used to unwrap
another key is not valid.

CKR_UNWRAPPING_KEY_SIZE RANGE: This value can only be returned by
C_UnwrapKey. It indicates that although the requested unwrapping operation could
in principle be carried out, this Cryptoki library (or the token) is unable to actually do
it because the supplied key's size is outside the range of key sizes that it can handle.

CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT: This value can only be
returned byC_UnwrapKey. It indicates that the type of the key specified to unwrap
another key is not consistent with the mechanism specified for unwrapping.

CKR_USER_ALREADY_LOGGED_IN: This value can only be returned by
C_Login. It indicates that the specified user cannot be logged into the session,
because it is already logged into the session. For example, if an application has an
open SO session, and it attempts to log the SO into it, it will receive this error code.

CKR_USER_ANOTHER_ALREADY_LOGGED IN: This value can only be
returned byC _Login. It indicates that the specified user cannot be logged into the
session, because another user is already logged into the session. For example, if an
application has an open SO session, and it attempts to log the normal user into it, it
will receive this error code.

CKR_USER_NOT_LOGGED_IN: The desired action cannot be performed because
the appropriate user (@n appropriate user) is not logged in. One example is that a
session cannot be logged out unless it is logged in. Another example is that a private
object cannot be created on a token unless the session attempting to create it is logged
in as the normal user. A final example is that cryptographic operations on certain
tokens cannot be performed unless the normal user is logged in.

CKR_USER_PIN_NOT_INITIALIZED: This value can only be returned by
C_Login. It indicates that the normal user’s PIN has not yet been initialized with
C_InitPIN.

CKR_USER_TOO_MANY_TYPES: An attempt was made to have more distinct
users simultaneously logged into the token than the token and/or library permits. For
example, if some application has an open SO session, and another application
attempts to log the normal user into a session, the attempt may return this error. It is
not required to, however. Only if the simultaneous distinct users cannot be supported
doesC_Login have to return this value. Note that this error code generalizes to true
multi-user tokens.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 122

e CKR_USER TYPE INVALID: An invalid vaue was specified as a
CK_USER_TYPE. Validtypesare CKU_SO and CKU_USER.

« CKR_WRAPPED KEY_INVALID: This value can only be returned by
C_UnwrapKey. It indicates that the provided wrapped key is not valid. If acall is
made to C_UnwrapKey to unwrap a particular type of key (i.e., some particular key
type is specified in the template provided to C_UnwrapKey), and the wrapped key
provided to C_UnwrapKey is recognizably not a wrapped key of the proper type,
then C_UnwrapKey should return CKR_WRAPPED_KEY _INVALID. This return
value has lower priority than CKR_WRAPPED_KEY_LEN_RANGE.

* CKR WRAPPED KEY_LEN RANGE: This vaue can only be returned by
C_UnwrapKey. It indicates that the provided wrapped key can be seen to be invalid
solely on the basis of its length. This return value has higher priority than
CKR_WRAPPED_KEY_INVALID.

« CKR_WRAPPING_KEY_HANDLE_INVALID: This vaue can only be returned by
C_WrapKey. It indicates that the key handle specified to be used to wrap another
key isnot valid.

« CKR_WRAPPING KEY_SIZE RANGE: This value can only be returned by
C_WrapKey. It indicates that although the requested wrapping operation could in
principle be carried out, this Cryptoki library (or the token) is unable to actually do it
because the supplied wrapping key’s size is outside the range of key sizes that it can
handle.

* CKR_WRAPPING_KEY_TYPE_INCONSISTENT: This value can only be returned
by C_WrapKey. It indicates that the type of the key specified to wrap another key is
not consistent with the mechanism specified for wrapping.

11.1.7 Moreon relative priorities of Cryptoki errors

In general, when a Cryptoki call is made, error codes from Section 11.1.1 (other than
CKR_OK) take precedence over error codes from Section 11.1.2, which take precedence
over error codes from Section 11.1.3, which take precedence over error codes from
Section 11.1.6. One minor implication of this is that functions that use a session handle
(i.e,, most functions!) never return the error code CKR_TOKEN_NOT_PRESENT (they
return CKR_SESSION_HANDLE_INVALID instead). Other than these precedences, if
more than one error code applies to the result of a Cryptoki call, any of the applicable
error codes may be returned. Exceptions to this rule will be explicitly mentioned in the
descriptions of functions.

Copyright © 1994-1999 RSA Laboratories

Page 123

11.1.8 Error code “gotchas”

Hereisashort list of afew particular things about return values that Cryptoki developers
might want to be aware of:

1. As mentioned in Sections 11.1.2 and 11.1.3, a Cryptoki library may not be able to
make a distinction between a token being removed before a function invocation and a
token being removed during a function invocation.

2. As mentioned in Section 11.1.2, an application should never count on getting a
CKR_SESSION_CLOSED error.

3. The difference between CKR_DATA_INVALID and CKR_DATA_LEN_RANGE
can be somewhat subtle. Unless an application needs to be able to distinguish
between these return values, it is best to aways treat them equivalently.

4. Similarly, the difference between CKR_ENCRYPTED _DATA_INVALID and
CKR_ENCRYPTED_DATA_LEN_RANGE, and between
CKR_WRAPPED_KEY_INVALID and CKR_WRAPPED_KEY_LEN_RANGE,
can be subtle, and it may be best to treat these return values equivalently.

5. Even with the guidance of Section 10.1, it can be difficult for a Cryptoki library
developer to know which of CKR ATTRIBUTE_VALUE INVALID,
CKR_TEMPLATE _INCOMPLETE, or CKR _TEMPLATE INCONSISTENT to
return. When possible, it is recommended that application developers be generous in
their interpretations of these error codes.

11.2 Conventions for functions returning output in a variable-length buffer

A number of the functions defined in Cryptoki return output produced by some
cryptographic mechanism. The amount of output returned by these functions is returned
in a variable-length application-supplied buffer. An example of a function of this sort is
C_Encrypt, which takes some plaintext as an argument, and outputs a buffer full of
ciphertext.

These functions have some common calling conventions, which we describe here. Two
of the arguments to the function are a pointer to the output buffer (say pBuf) and a pointer
to a location which will hold the length of the output produced (say pulBufLen). There
are two ways for an application to call such afunction:

1. If pBuf is NULL_PTR, then all that the function does is return (in *pulBufLen) a
number of bytes which would suffice to hold the cryptographic output produced from
the input to the function. This number may somewhat exceed the precise number of
bytes needed, but should not exceed it by a large amount. CKR_OK is returned by
the function.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 124

2. If pBuf is not NULL_PTR, then *pulBufLen must contain the size in bytes of the
buffer pointed to by pBuf. If that buffer is large enough to hold the cryptographic
output produced from the input to the function, then that cryptographic output is
placed there, and CKR_OK is returned by the function. If the buffer is not large
enough, then CKR_BUFFER_TOO_SMALL isreturned. In either case, *pulBufLen
IS set to hold the exact number of bytes needed to hold the cryptographic output
produced from the input to the function.

All functions which use the above convention will explicitly say so.

Cryptographic functions which return output in a variable-length buffer should always
return as much output as can be computed from what has been passed in to them thus far.
As an example, consider a session which is performing a multiple-part decryption
operation with DES in cipher-block chaining mode with PKCS padding. Suppose that,
initially, 8 bytes of ciphertext are passed to the C_DecryptUpdate function. The
blocksize of DES is 8 bytes, but the PKCS padding makes it unclear at this stage whether
the ciphertext was produced from encrypting a O-byte string, or from encrypting some
string of length at least 8 bytes. Hence the call to C_DecryptUpdate should return O
bytes of plaintext. If asingle additional byte of ciphertext is supplied by a subsequent call
to C_DecryptUpdate, then that call should return 8 bytes of plaintext (one full DES
block).

11.3 Disclaimer concerning sample code

For the remainder of Section 11, we enumerate the various functions defined in Cryptoki.
Most functions will be shown in use in at least one sample code snippet. For the sake of
brevity, sample code will frequently be somewhat incomplete. In particular, sample code
will generally ignore possible error returns from C library functions, and also will not
deal with Cryptoki error returnsin arealistic fashion.

11.4 General-purpose functions

Cryptoki provides the following general-purpose functions:

¢ C Initialize

CK_DEFI NE_FUNCTI ON(CK_RV, C_Initialize)(
CK_VA D_PTR pl nitArgs
);

C_Initialize initializes the Cryptoki library. plnitArgs either has the value NULL_PTR
or pointsto aCK_C_INITIALIZE_ARGS structure containing information on how the
library should deal with multi-threaded access. If an application will not be accessing
Cryptoki through multiple threads simultaneously, it can generaly supply the value

Copyright © 1994-1999 RSA Laboratories

Page 125

NULL_PTR to C_lInitialize (the consequences of supplying this value will be explained
below).

If pInitArgs is non-NULL_PTR, C_Initialize should <cast it to a
CK_C_INITIALIZE_ARGS PTR and then dereference the resulting pointer to obtain
the CK_C_INITIALIZE_ARGS fields CreateMutex, DestroyMutex, LockMutex,
UnlockMutex, flags, and pReserved. For this version of Cryptoki, the value of pReserved
thereby obtained must be NULL_PTR; if it’s not, th@n nitialize should return with the
value CKR_ARGUMENTS_BAD.

If the CKF_LIBRARY_CANT_CREATE_OS THREADS flag in theflags field is set,

that indicates that application threads which are executing calls to the Cryptoki library are
not permitted to use the native operation system calls to spawn off new threads. In other
words, the library’'s code may not create its own threads. If the library is unable to
function properly under this restrictiorG_Initialize should return with the value
CKR_NEED_TO_CREATE_THREADS.

A call to C_Initialize specifies one of four different ways to support multi-threaded
access via the value of tlgKF_OS LOCKING_OK flag in theflags field and the
values of theCreateMutex, DestroyMutex, LockMutex, andUnlockMutex function pointer
fields:

1. If the flagisn’t set, and the function pointer fields aren’t supplied (i.e., they al have
the value NULL_PTR), that means that the application won't be accessing the
Cryptoki library from multiple threads simultaneoudly.

2. If theflag is set, and the function pointer fields aren’t supplied (i.e., they al have the
value NULL_PTR), that means that the application will be performing multi-threaded
Cryptoki access, and the library needs to use the native operating system primitives to
ensure safe multi-threaded access. If the library is unable to do this, C_lInitialize
should return with the value CKR_CANT_LOCK.

3. If theflagisn't set, and the function pointer fields are supplied (i.e., they all have non-
NULL_PTR values), that means that the application will be performing multi-
threaded Cryptoki access, and the library needs to use the supplied function pointers
for mutex-handling to ensure safe multi-threaded access. If the library is unable to do
this, C_lInitialize should return with the value CKR_CANT_LOCK.

4. If the flag is set, and the function pointer fields are supplied (i.e., they al have non-
NULL_PTR values), that means that the application will be performing multi-
threaded Cryptoki access, and the library needs to use either the native operating
system primitives or the supplied function pointers for mutex-handling to ensure safe
multi-threaded access. If the library is unable to do this, C_lInitialize should return
with the value CKR_CANT_LOCK.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 126

If some, but not all, of the supplied function pointers to C_Initialize are non-
NULL_PTR, then C_Initialize should return with the value CKR_ARGUMENTS BAD.

A cdl to C_Initialize with pInitArgs set to NULL_PTR is treated like a cal to
C_Initialize with pInitArgs pointing to a CK_C_INITIALIZE_ARGS which has the
CreateMutex, DestroyMutex, LockMutex, UnlockMutex, and pReserved fields set to
NULL_PTR, and hasthe flags field set to O.

C_Initialize should be the first Cryptoki call made by an application, except for calls to
C_GetFunctionList. What this function actually does is implementation-dependent;
typicaly, it might cause Cryptoki to initialize its interna memory buffers, or any other
resources it requires.

If several applications are using Cryptoki, each one should call C_Initialize. Every cal
to C_Initialize should (eventually) be succeeded by a single cal to C_Finalize. See
Section 6.5 for more details.

Return values; CKR_ARGUMENTS BAD, CKR_CANT_LOCK,
CKR_CRYPTOKI| _ALREADY_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

CKR_NEED_TO CREATE_THREADS, CKR_OK.

Example: see C_Getlnfo.

¢ C Finalize

CK_DEFI NE_FUNCTI ON(CK_RV, C Finalize)(
CK_ VA D _PTR pReserved
);

C_Finalizeis called to indicate that an application is finished with the Cryptoki library.
It should be the last Cryptoki call made by an application. The pReserved parameter is
reserved for future versions, for this version, it should be set to NULL_PTR (if
C_Finalize is called with a non-NULL_PTR value for pReserved, it should return the
value CKR_ARGUMENTS BAD.

If several applications are using Cryptoki, each one should call C_Finalize. Each
application’s call toC_Finalize should be preceded by a single callGd nitialize; in
between the two calls, an application can make calls to other Cryptoki functions. See
Section 6.5 for more details.

Despite the fact that the parameters supplied to C_Initialize can in general allow for safe
multi-threaded access to a Cryptoki library, the behavior of C_Finalize is nevertheless
undefined if it is called by an application while other threads of the application are
making Cryptoki calls. The exception to this exceptional behavior of C_Finalize occurs
when a thread calls C_Finalize while another of the application’s threads is blocking on
Cryptoki’'s C_WaitForSlotEvent function. When this happens, the blocked thread

Copyright © 1994-1999 RSA Laboratories

Page 127

becomes unblocked and returns the value CKR_CRYPTOKI_NOT _INITIALIZED. See
C_WaitForSlotEvent for more information.

Return values: CKR_ARGUMENTS _BAD, CKR_CRYPTOKI|_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_OK.

Example: see C_Getlnfo.

¢ C GetInfo

CK_DEFI NE_FUNCTI ON(CK_RV, C _Get I nfo) (
CK_I NFO_PTR plnfo

) ;

C_Getlnfo returns genera information about Cryptoki. plnfo points to the location that
receives the information.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED, |
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_OK.

Example:

CK_ I NFO i nf o;
CK_ RV rv;
CK_C INTIALI ZE_ARGS I nitArgs;

InitArgs. CreateMutex = &WCreat eMut ex;

I nitArgs. DestroyMutex = &WDest royMit ex;
I nitArgs. LockMutex = &WLockMit ex;

I nit Args. Unl ockMut ex = &WUnl ockMuit ex;
InitArgs.flags = CKF_OS_LOCKI NG CK;

I nitArgs. pReserved = NULL_PTR;

rv = Clnitialize((CK VO D PTR) & nitArgs);
assert(rv == CKR_(X);

rv = C Getlnfo(& nfo);
assert(rv == CKR OK);

I f(info.version.mjor == 2) {
/* Do lots of interesting cryptographic things with the
t oken */

}
rv = C Finalize(NULL_PTR);

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 128

assert(rv == CKR_(X);

¢ C_GetFunctionList

CK_DEFI NE_FUNCTI ON(CK_RV, C_Cet Functi onLi st) (
CK_FUNCTI ON_LI ST_PTR_PTR ppFuncti onLi st

) ;

C_GetFunctionList obtains a pointer to the Cryptoki library’s list of function pointers.
ppFunctionList points to a value which will receive a pointer to the library’s
CK_FUNCTION_LIST structure, which in turn contains function pointers for all the
Cryptoki API routines in the library.The pointer thus obtained may point into memory
which is owned by the Cryptoki library, and which may or may not be writable. Whether

or not this is the case, no attempt should be made to write to this memory.

C_GetFunctionList is the only Cryptoki function which an application may call before
calling C_Initialize. It is provided to make it easier and faster for applications to use
shared Cryptoki libraries and to use more than one Cryptoki library simultaneously.

Return values: CKR_ARGUMENTS_BAD, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example:

CK_FUNCTI ON_LI ST_PTR pFuncti onLi st ;

CK Clnitialize pClnitialize;

CK_ RV rv;

/* It's OK to call C_GetFunctionList before calling
C_lInitialize */

rv = C_GetFunctionList(&pFunctionList);

assert(rv == CKR_OK);

pC_Initialize = pFunctionList -> C_Initialize;

/* Call the C_|nitialize function in the library */
rv = (pC_Initialize)(NULL_PTRY;

11.5 Sot and token management functions

Cryptoki provides the following functions for slot and token management:

¢+ C_GetSlotList

CK_DEFINE_FUNCTION(CK_RV, C_GetSlotList)(
CK_BBOOL tokenPresent,

CK_SLOT_ID_PTR pSlotList,

CK_ULONG_PTR pulCount

);

Copyright © 1994-1999 RSA Laboratories

Page 129

C_GetSlotList is used to obtain a list of dots in the system. tokenPresent indicates
whether the list obtained includes only those slots with a token present (TRUE), or all
slots (FALSE); pulCount pointsto the location that receives the number of dots.

There are two ways for an applicationto call C_GetSlotList:

1. If pSotList isNULL_PTR, then al that C_GetSlotList doesis return (in * pul Count)
the number of dots, without actualy returning a list of slots. The contents of the
buffer pointed to by pulCount on entry to C_GetSlotL ist has no meaning in this case,
and the call returns the value CKR_OK.

2. If pSotList is not NULL_PTR, then *pulCount must contain the size (in terms of
CK_SLOT_ID elements) of the buffer pointed to by pSotList. If that buffer is large
enough to hold the list of dots, then the list is returned in it, and CKR_OK is
returned. If not, then the call to C_GetSotList returns the value
CKR_BUFFER_TOO_SMALL. In either case, the value * pulCount is set to hold the
number of dots.

Because C_GetSlotList does not alocate any space of its own, an application will often

cal C_GetSlotList twice (or sometimes even more times—if an application is trying to
get a list of all slots with a token present, then the number of such slots can
(unfortunately) change between when the application asks for how many such slots there
are and when the application asks for the slots themselves). However, multiple calls to
C_GetSlotList are by no mean®quired.

All slots which C_GetSlotList reports must be able to be queried as valid slots by
C_GetSlotInfo. Furthermore, the set of slots accessible through a Cryptoki library is
fixed at the time thaC_Initialize is called. If an application call§_Initialize and
C_GetSlotList, and then the user hooks up a new hardware device, that device cannot
suddenly appear as a new sloCifGetSlotList is called again. To recognize the new
device, C_Initialize needs to be called again (and to be able to Callnitialize
successfullyC_Finalize needs to be called first). EvenGf Initialize is successfully
called, it may or may not be the case that the new device will then be successfully
recognized. On some platforms, it may be necessary to restart the entire system.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, |
CKR_CRYPTOKI_NOT _INITIALIZED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example:

CK_ULONG ul Sl ot Count, ul Sl ot Wt hTokenCount ;
CK _SLOT_I D PTR pSl otList, pSlotWthTokenLi st;
CK RV rv;

/* Get list of all slots */
rv = C GetSlotList(FALSE, NULL_PTR, &ul Sl ot Count);

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 130

if (rv == CKR_.OK) {
pSl ot Li st =
(CK_SLOT_I D_PTR)
mal | oc(ul Sl ot Count *si zeof (CK_SLOT_ID));
= C CetSlotList(FALSE, pSlotList, &ulSlotCount);
(rv == CKR.XK) {
* Now use that list of all slots */

rv
i f

/

}
free(pSlotList);

/* Get list of all slots ith a token present */
pSl ot Wt hTokenList = (CK_SLOT_I D PTR) mal | oc(0);
ul SI ot Wt hTokenCoun = 0;
while (1) {
rv = C Get SlotList(
TRUE, pSlotWthTokenList, ul Sl otWthTokenCount);
if (rv I'= CKR_BUFFER TOO SMALL)
br eak;
pSl ot Wt hTokenLi st = real | oc(
pSl ot Wt hTokenLi st
ul Sl ot Wt hTokenLi st *si zeof (CK_SLOT_I1D));

}

if (rv == CKR_.X) {
/* Now use that list of all slots with a token present
*/

}
free(pSl ot Wt hTokenLi st) ;

¢ C _GetSlotinfo

CK_DEFI NE_FUNCTI ON(CK_RV, C Cet Sl ot I nfo)(
CK_SLOT_ID slotlD,
CK_SLOT_I NFO_PTR plnfo

)E

C_GetSlotlnfo obtains information about a particular slot in the system. dotID is the ID
of the slot; plnfo points to the location that receives the slot information.

Copyright © 1994-1999 RSA Laboratories

Page 131

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI|_NOT_INITIALIZED, |
CKR_DEVICE_ERROR, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SLOT_ID_INVALID.

Example: see C_GetTokenlnfo.

¢ C GetTokenlnfo

CK_DEFI NE_FUNCTI ON(CK_RV, C _Cet Tokenl nf o) (
CK SLOT_I D slotlD,
CK_TOKEN_I NFO PTR plnfo

) ;

C_GetTokenInfo obtains information about a particular token in the system. dotID is
the ID of the token’s sloplnfo points to the location that receives the token information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS_BAD.

Example:

CK_ULONG ul Count ;
CK_SLOT_I D_PTR pSl ot Li st;
CK_SLOT_I NFO sl ot | nf o;
CK_TOKEN_I NFO t okenl nf o;
CK_ RV rv;

rv = C GetSlotList(FALSE, NULL _PTR, &ul Count);
If ((rv == CKR.OK) && (ul Count > 0)) {
pSlotList = (CK_SLOT_|I D_PTR)
mal | oc(ul Count *si zeof (CK_SLOT_I D)) ;
rv = C Get SlotList(FALSE, pSlotList, &ul Count);
assert(rv == CKR_X);

/* Get slot information for first slot */
rv = C GetSlotInfo(pSlotList[0], &slotlnfo);
assert(rv == CKR_X);

[* Get token information for first slot */

rv = C Get Tokenl nfo(pSlotList[0], &t okenlnfo);
if (rv == CKR_TOKEN _NOT_PRESENT) {

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 132

free(pSl ot List);

¢ C_WaitForSlotEvent

CK_DEFI NE_FUNCTI ON(CK_RV, C Wit For Sl ot Event) (
CK_FLAGS fl ags,
CK _SLOT_| D PTR pSl ot
CK_VA D _PTR pReserved

)5

C_WaitFor SlotEvent waits for a slot event, such as token insertion or token removal, to
occur. flags determines whether or not the C_WaitFor SlotEvent call blocks (i.e., waits
for a dlot event to occur); pSot points to a location which will receive the ID of the slot
that the event occurred in. pReserved is reserved for future versions; for this version of
Cryptoki, it should be NULL_PTR.

At present, the only flag defined for use in the flags argument is CKF_DONT_BL OCK:

#defi ne CKF_DONT_BLOCK 1
Internally, each Cryptoki application has a flag for each ot which is used to track
whether or not any unrecognized events involving that slot have occurred. When an
application initially calls C_Initialize, every slot’s event flag is cleared. Whenever a slot
event occurs, the flag corresponding to the slot in which the event occurred is set.

If C_WaitForSlotEvent is called with theCKF_DONT_BLOCK flag set in theflags
argument, and some slot’s event flag is set, then that event flag is cleared, and the call
returns with the ID of that slot in the location pointed tgBipt. If more than one slot’s

event flag is set at the time of the call, one such slot is chosen by the library to have its
event flag cleared and to have its slot ID returned.

If C_WaitForSlotEvent is called with theCKF_DONT_BLOCK flag set in theflags
argument, and no slot's event flag is set, then the call returns with the value
CKR_NO_EVENT. In this case, the contents of the location pointed 8oy when
C_WaitFor SlotEvent are undefined.

If C_WaitForSlotEvent is called with theCKF_DONT_BLOCK flag clear in thdlags
argument, then the call behaves as above, except that it will block. That is, if no slot’s
event flag is set at the time of the c&ll,WaitFor SlotEvent will wait until some slot’s
event flag becomes set. If a thread of an application Kas\WaaitFor SlotEvent call
blocking when another thread of that application cal® Finalize, the
C_WaitFor SlotEvent call returns with the value
CKR_CRYPTOKI_NOT_INITIALIZED.

Although the parameters supplied to C_Initialize can in general allow for safe multi-
threaded access to a Cryptoki library, C_WaitForSlotEvent is exceptional in that the

Copyright © 1994-1999 RSA Laboratories

Page 133

behavior of Cryptoki is undefined if multiple threads of a single application make
simultaneous callsto C_WaitFor SlotEvent.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI|_NOT_INITIALIZED, |
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_NO_EVENT, CKR_OK.

Example:

CK_FLAGS flags = 0;
CK_SLOT_ID slotlD
CK _SLOT I NFO sl ot I nf o;

)* Bl ock and wait for a slot event */
rv = C_WaitForSlotEvent(flags, &slotlD, NULL_PTR);
assert(rv == CKR_(X);

[* See what’s up with that slot */

rv = C_GetSlotIinfo(slotID, &slotinfo);
assert(rv == CKR_OK);

¢ C_GetMechanismList

CK_DEFINE_FUNCTION(CK_RV, C_GetMechanismList)(
CK_SLOT_ID slotID,

CK_MECHANISM_TYPE_PTR pMechanismList,
CK_ULONG_PTR pulCount

);

C_GetMechanismList is used to obtain alist of mechanism types supported by a token.
SotID is the ID of the token’s slopulCount points to the location that receives the
number of mechanisms.

There are two ways for an application to €llGetM echanismList:

1. If pMechanismList is NULL_PTR, then all tha€_ GetMechanismList does is return

(in *pulCount) the number of mechanisms, without actually returning a list of

mechanisms. The contents gduFCount on entry toC_GetMechanismList has no
meaning in this case, and the call returns the value CKR_OK.

2. If pMechanismList is not NULL_PTR, then pulCount must contain the size (in terms
of CK_MECHANISM TYPE elements) of the buffer pointed to by

pMechanismList. If that buffer is large enough to hold the list of mechanisms, then

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 134

the list is returned in it, and CKR_OK is returned. If not, then the cal to
C_GetMechanismList returns the value CKR_BUFFER_TOO_SMALL. In either
case, the value * pul Count is set to hold the number of mechanisms.

Because C_GetMechanismList does not allocate any space of its own, an application
will often call C_GetMechanismList twice. However, this behavior is by no means
required.

Return values: CKR_BUFFER_TOO SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS BAD.

Example:

CK SLOT_I D slotl D

CK_ULONG ul Count ;

CK_MECHANI SM TYPE_PTR pMechani snii st ;
CK_ RV rv;

rv = C_Get Mechani snlist(slotlD, NULL_PTR, &ul Count);
if ((rv == CKR.OK) && (ul Count > 0)) {
pMechani snii st =
(CK_MECHANI SM TYPE_PTR)
mal | oc(ul Count *si zeof (CK_MECHANI SM TYPE)) ;
rv = C_Get Mechani snii st (slotlD, pMechanisnLi st,
&ul Count) ;
if (rv == CKR_K) {

}
free(pMechani snii st);

Copyright © 1994-1999 RSA Laboratories

Page 135

¢ C_GetMechanisminfo

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Mechani sm nf o) (
CK SLOT_I D slotlD,
CK_MECHANI SM TYPE t ype,
CK_MECHANI SM | NFO_PTR pl nfo

) ;

C_GetMechanisminfo obtains information about a particular mechanism possibly
supported by a token. dlotID is the ID of the token’s slotype is the type of mechanism;
plnfo points to the location that receives the mechanism information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID,
CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS_BAD.

Example:

CK SLOT_I D slotl D
CK_MECHANI SM | NFO i nf o;
CK RV rv;

)* Get information about the CKM MD2 nechanismfor this
t oken */

= C _Get Mechani sm nfo(slotl D, CKM MD2, & nfo);

(rv == CKR_OX)

if (info.flags & CKF_DI GEST) {

rv
i f

}
}

¢ C_InitToken

CK_DEFI NE_FUNCTI ON(CK_RV, C_I ni t Token) (
CK_SLOT_ID slotlD,
CK_CHAR _PTR pPi n,
CK_ULONG ul Pi nLen,
CK_UTF8CHAR PTR pLabel |

) ;

C_InitToken initializes a tokendlotID is the ID of the token’s slopPin points to the
SO’s initial PIN (which needhot be null-terminated)ulPinLen is the length in bytes of

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 136

the PIN; pLabel points to the 32-byte label of the token (which must be padded with
blank characters, and which must not be null-terminated).

If the token has not been initialized (i.e. new from the factory), then the pPin parameter
becomes the initial value of the SO PIN. If the token is being reinitialized, the pPin
parameter is checked against the existing SO PIN to authorize the initialization operation.
In both cases, the SO PIN is the value pPin after the function completes successfully. If
the SO PIN is lost, then the card must be reinitialized using a mechanism outside the
scope of this standard. The CKF TOKEN_INITIALIZED flag in the
CK_TOKEN INFO structure indicates the action that will result from caling
C InitToken. If set, the token will be renitialized, and the client must supply the
existing SO password in pPin.

When atoken isinitialized, all objects that can be destroyed are destroyed (i.e., al except

for “indestructible” objects such as keys built into the token). Also, access by the normal
user is disabled until the SO sets the normal user's PIN. Depending on the token, some
“default” objects may be created, and attributes of some objects may be set to default
values.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in it€K_TOKEN_INFO being

set, then that means that there is some way for a user to be authenticated to the token
without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. To initialize a token with such a protected authentication pathpRime
parameter toC_InitToken should be NULL _PTR. During the execution of
C_InitToken, the SO’s PIN will be entered through the protected authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-
dependent whether or nGt | nitToken can be used to initialize the token.

A token cannot be initialized if Cryptoki detects thay application has an open session

with it; when a call t&C_InitToken is made under such circumstances, the call fails with
error CKR_SESSION_EXISTS. Unfortunately, it may happen w@iemitToken is

called that some other applicatidoes have an open session with the token, but Cryptoki
cannot detect this, because it cannot detect anything about other applications using the
token. If this is the case, then the consequences &f thetToken call are undefined.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_PIN_INCORRECT, CKR_PIN_LOCKED, CKR_SESSION_EXISTS,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_TOKEN_ WRITE_PROTECTED,
CKR_ARGUMENTS_BAD.

Copyright © 1994-1999 RSA Laboratories

Page 137

Example:

CK SLOT_I D slotl D
CK_CHAR_PTR pin = “MyPIN”;
CK_UTF8CHAR label[32];
CK_RV rv;

memset(label, ‘ ’, sizeof(label));

memcpy(label, “My first token”, strlen(“My first
token”));

rv = C_InitToken(slotID, pin, strlen(pin), label);

if (rv == CKR_OK) {

.

¢ C_InitPIN

CK_DEFINE_FUNCTION(CK_RYV, C_InitPIN)(
CK_SESSION_HANDLE hSession,
CK_CHAR_PTR pPin,

CK_ULONG ulPinLen

);

C_InitPIN initializes the normal user's PINhSession is the session’s handl@pPin
points to the normal user’s PIMNIPinLen is the length in bytes of the PIN.

C_InitPIN can only be called in the “R/W SO Functions” state. An attempt to call it
from a session in any other state fails with error CKR_USER_NOT_LOGGED _IN.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in t€K_TOKEN_INFO being

set, then that means that there is some way for a user to be authenticated to the token
without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. To initialize the normal user's PIN on a token with such a protected
authentication path, th#Pin parameter t&€ InitPIN should be NULL_PTR. During the
execution of C_InitPIN, the SO will enter the new PIN through the protected
authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-
dependent whether or n@t InitPIN can be used to initialize the normal user’s token
access.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 138

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_INVALID,
CKR_PIN_LEN_RANGE, CKR_SESSION_CLOSED, CKR_SESSION_READ_ONLY,
CKR_SESSION_HANDLE_INVALID, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN, CKR_ARGUMENTS BAD.

Example:
CK_SESSI ON_HANDLE hSessi on;
CK_CHAR newPin[]= {*NewPIN};
CK_RV rv;

rv = C_InitPIN(hSession, newPin, sizeof(newPin));
if (rv == CKR_OK) {

.

¢ C_SetPIN

CK_DEFINE_FUNCTION(CK_RV, C_SetPIN)(
CK_SESSION_HANDLE hSession,
CK_CHAR_PTR pOIdPin,

CK_ULONG ulOldLen,

CK_CHAR_PTR pNewPin,

CK_ULONG ulNewLen

);

C_SetPIN modifies the PIN of the user that is currently logged in. hSession is the
session’s handlgiOldPin points to the old PINglOldLen is the length in bytes of the old
PIN; pNewPin points to the new PINJINewLen is the length in bytes of the new PIN.

C_SetPIN can only be called in the “R/W SO Functions” state or “R/W User Functions”
state. An attempt to call it from a session in any other state fails with error
CKR_SESSION_READ_ONLY.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in it€K_TOKEN_INFO being

set, then that means that there is some way for a user to be authenticated to the token
without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. To modify the current user’s PIN on a token with such a protected authentication
path, thegpOldPin andpNewPin parameters t&€_ SetPIN should be NULL_PTR. During

the execution ofC_SetPIN, the current user will enter the old PIN and the new PIN
through the protected authentication path. It is not specified how the PINpad should be
used to entetwo PINSs; this varies.

Copyright © 1994-1999 RSA Laboratories

Page 139

If the token has a protected authentication path other than a PINpad, then it is token-
dependent whether or not C_SetPIN can be used to modify the current user’s PIN.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_PIN_INCORRECT, CKR_PIN_INVALID, CKR_PIN_LEN_RANGE,
CKR_PIN_LOCKED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS_BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_CHAR oldPin[] = {*OIdPIN};
CK_CHAR newPin[] = {*NewPIN};
CK_RV rv;

rv = C_SetPIN(
hSession, oldPin, sizeof(oldPin), newPin,
sizeof(newPin));
if (rv == CKR_OK) {

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 140

11.6 Session management functions

A typical application might perform the following series of steps to make use of a token
(note that there are other reasonable sequences of events that an application might
perform):

1. Select atoken.

2. Make one or more cals to C_OpenSession to obtain one or more sessions with the
token.

3. Cdl C_Login to log the user into the token. Since al sessions an application has
with atoken have a shared login state, C_L ogin only needs to be called for one of the
Sessions.

4. Perform cryptographic operations using the sessions with the token.

5. Call C_CloseSession once for each session that the application has with the token, or
call C_CloseAllSessions to close all the application’s sessions simultaneously.

As has been observed, an application may have concurrent sessions with more than one
token. It is also possible for a token to have concurrent sessions with more than one
application.

Cryptoki provides the following functions for session management:

¢ C_OpenSession

CK_DEFI NE_FUNCTI ON(CK_RV, C OpenSessi on) (
CK SLOT_I D slotlD,
CK_FLAGS fl ags,
CK_VAO D_PTR pApplicati on,
CK_NOTI FY Notify,
CK_SESSI ON_HANDLE_PTR phSessi on

) ;

C_OpenSession opens a session between an application and a token in a particular slot.
dotID is the slot’s ID;flags indicates the type of sessiqguipplication is an application-
defined pointer to be passed to the notification callb&ikify is the address of the
notification callback function (see Section 11.13hSession points to the location that
receives the handle for the new session.

When opening a session with OpenSession, theflags parameter consists of the logical
OR of zero or more bit flags defined in t8&_SESSION_INFO data type. For legacy
reasons, theCKF_SERIAL_SESSION bit must always be set; if a call to
C_OpenSession does not have this bit set, the call should return unsuccessfully with the
error code CKR_PARALLEL _NOT_SUPPORTED.

Copyright © 1994-1999 RSA Laboratories

Page 141

There may be alimit on the number of concurrent sessions an application may have with

the token, which may depend on whether the session is “read-only” or “read/write”. An
attempt to open a session which does not succeed because there are too many existing
sessions of some type should return CKR_SESSION_COUNT.

If the token is write-protected (as indicated in @€ _TOKEN_INFO structure), then
only read-only sessions may be opened with it.

If the application callingC_OpenSession already has a R/W SO session open with the
token, then any attempt to open a R/O session with the token fails with error code
CKR_SESSION_READ_WRITE_SO_EXISTS (see Section 6.6.7).

The Notify callback function is used by Cryptoki to notify the application of certain
events. If the application does not wish to support callbacks, it should pass a value of
NULL_PTR as theNotify parameter. See Section 11.17 for more information about
application callbacks.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_COUNT, CKR_SESSION_PARALLEL_NOT_SUPPORTED,
CKR_SESSION_READ_WRITE_SO_EXISTS, CKR_SLOT_ID_INVALID,
CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS_BAD.

Example: se€_CloseSession.

¢ C CloseSession

CK_DEFI NE_FUNCTI ON(CK_RV, C _Cl oseSessi on) (
CK_SESSI ON_HANDLE hSessi on

) ;

C_CloseSession closes a session between an application and a tok&ession is the
session’s handle.

When a session is closed, all session objects created by the session are destroyed
automatically, even if the application has other sessions “using” the objects (see Sections
6.6.5-6.6.7 for more details).

Depending on the token, when the last open session any application has with the token is
closed, the token may be “ejected” from its reader (if this capability exists).

Despite the fact thi€_CloseSession is supposed to close a session, the return value
CKR_SESSION_CLOSED is amrror return. It actually indicates the (probably
somewhat unlikely) event that while this function call was executing, another call was
made toC_CloseSession to close this particular session, and that call finished executing

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 142

first. Such uses of sessions are a bad idea, and Cryptoki makes little promise of what will
occur in general if an application indulges in this sort of behavior.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK SLOT_I D slotl D

CK_BYTE application;
CK_NOTI FY MyNoti fy;
CK_SESSI ON_HANDLE hSessi on;
CK RV rv;

application = 17,
MyNoti fy = &Encrypti onSessi onCal | back;
rv = C _OpenSessi on(
slot1 D, CKF_RW SESSI ON, (CK_ VO D _PTR) &appli cati on,
MyNot i fy,
&hSessi on) ;
if (rv == CKR_K) {

C_Ci oseSessi on(hSessi on);

}
¢ C _CloseAllSessions

CK_DEFI NE_FUNCTI ON(CK_RV, C _d oseAl | Sessi ons) (
CK SLOT ID slotID

) ;

C_CloseAllSessions closes all sessions an application has with a token. slotID specifies
the token’s slot.

When a session is closed, all session objects created by the session are destroyed

automatically.

Depending on the token, when the last open session any application has with the token is

closed, the token may be “ejected” from its reader (if this capability exists).

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,

Copyright © 1994-1999 RSA Laboratories

Page 143

CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT.
Example:

CK SLOT_I D slotl D
CK_ RV rv;

'rv = C_C oseAll Sessions(slotID);

¢ C_GetSessionlnfo

CK_DEFI NE_FUNCTI ON(CK_RV, C_Cet Sessi onl nf 0) (
CK_SESSI ON_HANDLE hSessi on,
CK_SESSI ON_I NFO_PTR plnfo

) ;

C_GetSessionl nfo obtains information about a session. hSession is the session’s handle;
plnfo points to the location that receives the session information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_ARGUMENTS_BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_SESSI ON_I NFO i nf o;
CK RV rv;

= C_Cet Sessi onl nfo(hSessi on, & nfo);
(rv == CKR_X) {
if (info.state == CKS_RW USER_FUNCTI ONS) {

rv
i f

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 144

¢ C _GetOperationState

CK_DEFI NE_FUNCTI ON(CK_RV, C _Get OperationState)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pQperationSt at e,
CK_ULONG _PTR pul Oper ati onSt at eLen

) ;

C_GetOperationState obtains a copy of the cryptographic operations state of a session,
encoded as a string of bytes. hSession is the session’s handlpQperationSate points to
the location that receives the stapejOperationSateLen points to the location that
receives the length in bytes of the state.

Although the saved state output By GetOperationState is not really produced by a
“cryptographic mechanism”C_GetOperationState nonetheless uses the convention
described in Section 11.2 on producing output.

Precisely what the “cryptographic operations state” this function saves is varies from
token to token; however, this state is what is provided as inplit $etOper ationState
to restore the cryptographic activities of a session.

Consider a session which is performing a message digest operation using S¢ARE (
session is using th€KM_SHA_1 mechanism). Suppose that the message digest
operation was initialized properly, and that precisely 80 bytes of data have been supplied
so far as input to SHA-1. The application now wants to “save the state” of this digest
operation, so that it can continue it later. In this particular case, since SHA-1 processes
512 bits (64 bytes) of input at a time, the cryptographic operations state of the session
most likely consists of three distinct parts: the state of SHA-1's 160-bit internal chaining
variable; the 16 bytes of unprocessed input data; and some administrative data indicating
that this saved state comes from a session which was performing SHA-1 hashing. Taken
together, these three pieces of information suffice to continue the current hashing
operation at a later time.

Consider next a session which is performing an encryption operation with DES (a block
cipher with a block size of 64 bits) in CBC (cipher-block chaining) madg the session

Is using theCKM_DES_CBC mechanism). Suppose that precisely 22 bytes of data (in
addition to an IV for the CBC mode) have been supplied so far as input to DES, which
means that the first two 8-byte blocks of ciphertext have already been produced and
output. In this case, the cryptographic operations state of the session most likely consists
of three or four distinct parts: the second 8-byte block of ciphertext (this will be used for
cipher-block chaining to produce the next block of ciphertext); the 6 bytes of data still
awaiting encryption; some administrative data indicating that this saved state comes from
a session which was performing DES encryption in CBC mode; and possibly the DES key
being used for encryption (s€e SetOperationState for more information on whether or

not the key is present in the saved state).

Copyright © 1994-1999 RSA Laboratories

Page 145

If a session is performing two cryptographic operations simultaneously (see Section
11.13), then the cryptographic operations state of the session will contain all the
necessary information to restore both operations.

An attempt to save the cryptographic operations state of a sesson which does not
currently have some active saveable cryptographic operation(s) (encryption, decryption,
digesting, signing without message recovery, verification without message recovery, or
some lega combination of two of these) should fail with the error
CKR_OPERATION_NOT _INITIALIZED.

An attempt to save the cryptographic operations state of a session which is performing an
appropriate cryptographic operation (or two), but which cannot be satisfied for any of

various reasons (certain necessary state information and/or key information can’t leave
the token, for example) should fail with the error CKR_STATE_UNSAVEABLE.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_STATE_UNSAVEABLE,
CKR_ARGUMENTS_ BAD.

Example: se€_SetOperationState.

¢ C_SetOperationState

CK_DEFI NE_FUNCTI ON(CK_RV, C SetQperationState)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pQperationSt at e,
CK_ULONG ul Oper ati onSt at eLen,
CK_OBJECT_HANDLE hEncrypti onKey,
CK_OBJECT_HANDLE hAut henti cati onKey

) ;

C_SetOperationState restores the cryptographic operations state of a session from a
string of bytes obtained wit@_GetOperationState. hSession is the session’s handle;
pOperationSate points to the location holding the saved stal®perationStatel_en holds

the length of the saved state&EncryptionKey holds a handle to the key which will be

used for an ongoing encryption or decryption operation in the restored session (or 0O if no
encryption or decryption key is needed, either because no such operation is ongoing in the
stored session or because all the necessary key information is present in the saved state);
hAuthenticationKey holds a handle to the key which will be used for an ongoing
signature, MACing, or verification operation in the restored session (or O if no such key is
needed, either because no such operation is ongoing in the stored session or because all
the necessary key information is present in the saved state).

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 146

The state need not have been obtained from the same session (the “source session”) as it
IS being restored to (the “destination session”). However, the source session and
destination session should have a common session statg., (
CKS_RW_USER_FUNCTIONS), and should be with a common token. There is also no
guarantee that cryptographic operations state may be carried across logins, or across
different Cryptoki implementations.

If C_SetOperationState is supplied with alleged saved cryptographic operations state
which it can determine is not valid saved state (or is cryptographic operations state from a
session with a different session state, or is cryptographic operations state from a different
token), it fails with the error CKR_SAVED_STATE_INVALID.

Saved state obtained from calls @ GetOperationState may or may not contain
information about keys in use for ongoing cryptographic operations. If a saved
cryptographic operations state has an ongoing encryption or decryption operation, and the
key in use for the operation is not saved in the state, then it must be supplied to
C_SetOperationState in the hEncryptionKey argument. If it is not, then
C_SetOperationState will fail and return the error CKR_KEY_NEEDED. If the key in

use for the operatiors saved in the state, thencan be supplied in th@EncryptionKey
argument, but this is not required.

Similarly, if a saved cryptographic operations state has an ongoing signature, MACing, or
verification operation, and the key in use for the operation is not saved in the state, then it
must be supplied t€_ SetOperationState in the hAuthenticationKey argument. If it is

not, thenC_SetOperationState will fail with the error CKR_KEY_NEEDED. If the key

in use for the operations saved in the state, then dan be supplied in the
hAuthenticationKey argument, but this is not required.

If anirrelevant key is supplied t&€_SetOperationState call (e.g., a nonzero key handle

Is submitted in thénEncryptionKey argument, but the saved cryptographic operations
state supplied does not have an ongoing encryption or decryption operation, then
C_SetOperationState fails with the error CKR_KEY_NOT_NEEDED.

If a key is supplied as an argumeniGoSetOperationState, andC_SetOperationState

can somehow detect that this key was not the key being used in the source session for the
supplied cryptographic operations state (it may be able to detect this if the key or a hash
of the key is present in the saved state, for example), Gh&atOper ationState fails

with the error CKR_KEY_CHANGED.

An application can look at th€EKF_RESTORE_KEY_NOT_NEEDED flag in the
flags field of theCK_TOKEN_INFO field for a token to determine whether or not it
needs to supply key handles@oSetOper ationState calls. If this flag is TRUE, then a
call toC_SetOperationState never needs a key handle to be supplied to it. If this flag is
FALSE, then at least some of the tint2,SetOper ationState requires a key handle, and
so the application should probabfyways pass in any relevant key handles when
restoring cryptographic operations state to a session.

Copyright © 1994-1999 RSA Laboratories

Page 147

C_SetOperationState can successfully restore cryptographic operations state to a session
even if that sesson has active cryptographic or object search operations when
C_SetOperationStateis called (the ongoing operations are abruptly cancelled).

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_CHANGED,
CKR_KEY_NEEDED, CKR_KEY _NOT_NEEDED, CKR_OK,
CKR_SAVED_STATE_INVALID, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_MECHANI SM di gest Mechani sm

CK_ULONG ul St ateLen;

CK BYTE datal[] = {0x01, 0x03, 0x05, 0x07};
CK_BYTE dat a2?[] {0x02, 0x04, 0x08};

CK _BYTE data3[] = {0x10, OxOF, OxOE, 0x0D, 0x0GC};
CK_BYTE pDi gest [20];

CK_ULONG ul Di gest Len;

CK RV rv;

)* Initialize hash operation */
rv = C Digestlnit(hSession, &digestMchanism;
assert(rv == CKR_(X);

/* Start hashing */
rv = C_Di gest Updat e(hSessi on, datal, sizeof(datal));
assert(rv == CKR_(X);

/* Find out how big the state mi ght be */

rv = C _Get(OperationState(hSession, NULL_PTR
&ul St at eLen) ;

assert(rv == CKR_(X);

/* Allocate sonme nenory and then get the state */
pState = (CK BYTE _PTR) nmal | oc(ul St at eLen);
rv = C GetOperationState(hSession, pState, &ul Statelen);

/* Continue hashing */
rv = C_Di gestUpdat e(hSessi on, data2, sizeof(data2));
assert(rv == CKR_(X);

/* Restore state. No key handl es needed */
rv = C Set QperationState(hSession, pState, ul StatelLen, 0,

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 148

0);
assert(rv == CKR_(X);

/* Continue hashing fromwhere we saved state */
rv = C_Di gestUpdat e(hSessi on, data3, sizeof(data3));
assert(rv == CKR_(X);

/ * Concl ude hashi ng operation */
ul D gest Len = si zeof (pDi gest);
rv = C _DigestFinal (hSession, pDigest, &ulDigestlLen);
if (rv == CKR_.OX) {
/* pDigest[] now contains the hash of
0x01030507100FOEODOC */

}

¢ C_Laogin

CK_DEFI NE_FUNCTI ON(CK_RV, C _Logi n) (
CK_SESSI ON_HANDLE hSessi on,
CK_USER_TYPE user Type,

CK_CHAR _PTR pPi n,
CK_ULONG ul Pi nLen
);

C_Login logs auser into atoken. hSession is a session handle; user Type is the user type;
pPin points to the user’s PINgPinLen is the length of the PIN.

Depending on the user type, if the call succeeds, each of the application’s sessions will
enter either the “R/W SO Functions” state, the “R/W User Functions” state, or the “R/O
User Functions” state.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO

being set, then that means that there is some way for a user to be authenticated to the
token without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. Or the user might not even use a PIN—authentication could be achieved by some
fingerprint-reading device, for example. To log into a token with a protected
authentication path, thpPin parameter toC_Login should be NULL PTR. When

C_L ogin returns, whatever authentication method supported by the token will have been
performed; a return value of CKR_OK means that the user was successfully
authenticated, and a return value of CKR_PIN_INCORRECT means that the user was
denied access.

If there are any active cryptographic or object finding operations in an application’s
session, and thed_Login is successfully executed by that application, it may or may not

Copyright © 1994-1999 RSA Laboratories

Page 149

be the case that those operations are still active. Therefore, before logging in, any active
operations should be finished.

If the application calling C_L ogin has a R/O session open with the token, then it will be
unable to log the SO into a session (see Section 6.6.7). An attempt to do this will result
in the error code CKR_SESSION_READ_ONLY_EXISTS.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI|_NOT_INITIALIZED, |
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_PIN_EXPIRED, CKR_PIN_INCORRECT, CKR_PIN_LOCKED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,

CKR_SESSION_READ ONLY_EXISTS, CKR_USER_ALREADY_LOGGED IN,
CKR_USER _ANOTHER ALREADY_LOGGED IN,

CKR_USER_PIN_NOT _INITIALIZED, CKR_USER_TOO MANY_TYPES,
CKR_USER_TYPE_INVALID.

Example: see C_L ogout.

¢ C_Logout

CK_DEFI NE_FUNCTI ON(CK_RV, C Logout) (
CK_SESSI ON_HANDLE hSessi on
);

C_L ogout logs a user out from atoken. hSession is the session’s handle.

Depending on the current user type, if the call succeeds, each of the application’s sessions
will enter either the “R/W Public Session” state or the “R/O Public Session” state.

When C_Logout successfully executes, any of the application’s handles to private
objects become invalid (even if a user is later logged back into the token, those handles
remain invalid). In addition, all private session objects from sessions belonging to the
application are destroyed.

If there are any active cryptographic or object-finding operations in an application’s
session, and the@_L ogout is successfully executed by that application, it may or may
not be the case that those operations are still active. Therefore, before logging out, any
active operations should be finished.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED _IN.

Example:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 150

CK_SESSI ON_HANDLE hSessi on;
CK_CHAR userPIN[] = {*"MyPIN"};
CK_RV rv;

rv = C_Login(hSession, CKU_USER, userPIN,

sizeof(userPIN));
if (rv == CKR_OK) {

-rv == C_Logout(hSession);
if (v == CKR_OK) {

}
}
11.7 Object management functions
Cryptoki provides the following functions for managing objects. Additional functions

provided specifically for managing key objects are described in Section 11.14.

¢ C_CreateObject

CK_DEFINE_FUNCTION(CK_RYV, C_CreateObject)(
CK_SESSION_HANDLE hSession,
CK_ATTRIBUTE_PTR pTemplate,

CK_ULONG ulCount,

CK_OBJECT_HANDLE_PTR phObject

);

C_CreateObject creates a new object. hSession is the session’s handlgTemplate points
to the object’'s templateylCount is the number of attributes in the templgteObject
points to the location that receives the new object’'s handle.

If a call toC_CreateObject cannot support the precise template supplied to it, it will fall

and return without creating any object.

If C_CreateObject is used to create a key object, the key object will have its

CKA_LOCAL attribute set to FALSE.

Only session objects can be created during a read-only session. Only public objects can

be created unless the normal user is logged in.

Return values: CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,

Copyright © 1994-1999 RSA Laboratories

Page 151

CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ ONLY, CKR_ TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER _NOT_LOGGED_IN, CKR_ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE
hDat a,
hCertificate,
hKey;
CK_OBJECT_CLASS
dat aCl ass = CKO _DATA,
certificated ass = CKO _CERTI FI CATE,
keyd ass = CKO _PUBLI C _KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK_CHAR application[] = {*My Application™};
CK_BYTE dataValue[] ={...};
CK_BYTE subject]] = {...};
CK_BYTEid[] ={...};
CK_BYTE certificateValue[] = {...};
CK_BYTE modulus[] ={...};
CK_BYTE exponent[] = {...};
CK_BYTE true = TRUE;
CK_ATTRIBUTE dataTemplate[] = {
{CKA _CLASS, &dataClass, sizeof(dataClass)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_APPLICATION, application, sizeof(application)},
{CKA_VALUE, dataValue, sizeof(dataValue)}

CK_ATTRIBUTE certificateTemplate[] = {
{CKA _CLASS, &certificateClass,
sizeof(certificateClass)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_SUBJECT, subject, sizeof(subject)},
{CKA _ID, id, sizeof(id)},
{CKA_VALUE, certificateValue, sizeof(certificateValue)}

CK_ATTRIBUTE keyTemplate[] = {

{CKA _CLASS, &keyClass, sizeof(keyClass)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_WRAP, &true, sizeof(true)},

{CKA_MODULUS, modulus, sizeof(modulus)},
{CKA_PUBLIC_EXPONENT, exponent, sizeof(exponent)}

L
CK_RV rv;

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 152

}* Create a data object */
rv = C Create(bject (hSession, &dataTenplate, 4, &hData);
if (rv == CKR_.OX) {

}

/* Create a certificate object */
rv = C _Createbject (

hSessi on, &certificateTenplate, 5, &hCertificate);
if (rv == CKR_K) {

}

/* Create an RSA public key object */
rv = C _Createbject(hSession, &eyTenpl ate, 5, &hKey);
if (rv == CKR_K) {

}

¢ C_CopyObiject

CK_DEFI NE_FUNCTI ON(CK_RV, C CopyObj ect) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,

CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_OBJECT_HANDLE_PTR phNewbj ect
);

C_CopyObject copies an object, creating a new object for the copy. hSession is the
session’s handldiObject is the object’'s handlggTemplate points to the template for the
new object;ulCount is the number of attributes in the templgieiNewObject points to
the location that receives the handle for the copy of the object.

The template may specify new values for any attributes of the object that can ordinarily be
modified €.g., in the course of copying a secret key, a k€A EXTRACTABLE
attribute may be changed from TRUE to FALSE, but not the other way around. If this
change is made, the new ke€&KA_NEVER_EXTRACTABLE attribute will have the

value FALSE. Similarly, the template may specify that the new key's
CKA_SENSITIVE attribute be TRUE; the new key will have the same value for its

Copyright © 1994-1999 RSA Laboratories

Page 153

CKA_ALWAYS SENSITIVE attribute as the original key). It may also specify new
values of the CKA_TOKEN and CKA_PRIVATE attributes (e.g., to copy a session
object to a token object). If the template specifies a value of an attribute which is
Incompatible with other existing attributes of the object, the call fails with the return code
CKR_TEMPLATE_INCONSISTENT.

If acall to C_CopyObject cannot support the precise template supplied to it, it will fail
and return without creating any object.

Only session objects can be created during a read-only session. Only public objects can
be created unless the normal user islogged in.

Return values; CKR_ATTRIBUTE_READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI|_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

CKR_OBJECT HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ ONLY,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER _NOT_LOGGED_IN, CKR_ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey, hNewKey;
CK_OBJECT_CLASS keyd ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK BYTE id[] ={...};
CK_BYTE keyValue[] ={...};
CK BYTE fal se = FALSE;
CK_BYTE true = TRUE;
CK_ATTRI BUTE keyTenpl ate[] = {
{CKA CLASS, &keyd ass, sizeof (keyd ass)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &fal se, sizeof(false)},
{CKA ID, id, sizeof(id)},
{CKA VALUE, keyVal ue, sizeof (keyVal ue)}

CK_ATTRI BUTE copyTenpl ate[] = {
{CKA TOKEN, &true, sizeof(true)}

¥,

CK RV rv;

)* Create a DES secret key session object */

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 154

rv = C _Createbject(hSession, &eyTenpl ate, 5, &hKey);
if (rv == CKR_K) {

* Create a copy which is a token object */

v = C Copybj ect (hSessi on, hKey, ©Tenplate, 1,

&hNewKey) ;

/
;

}

¢ C _DestroyObject

CK_DEFI NE_FUNCTI ON(CK_RV, C Destroyject) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hQObj ect

) ;

C_DestroyObject destroys an object. hSession is the session’s handle; ah@bject is
the object’s handle.

Only session objects can be destroyed during a read-only session. Only public objects
can be destroyed unless the normal user is logged in.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TOKEN_WRITE_PROTECTED.

Example: se€_GetObjectSize.

¢ C _GetObjectSize

CK_DEFI NE_FUNCTI ON(CK_RV, C Get Obj ect Si ze) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,

CK_ULONG_PTR pul Si ze

) ;

C_GetObjectSize gets the size of an object in byteBSession is the session’s handle;
hObject is the object’s handlgiulSze points to the location that receives the size in bytes
of the object.

Cryptoki does not specify what the precise meaning of an object’s size is. Intuitively, it is
some measure of how much token memory the object takes up. If an application deletes
(say) a private object of size S, it might be reasonable to assume that the
ulFreePrivateMemory field of the token’sCK_TOKEN_INFO structure increases by
approximately S.

Copyright © 1994-1999 RSA Laboratories

Page 155

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_INFORMATION_SENSITIVE, CKR_OBJECT_HANDLE_INVALID, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hQbj ect ;
CK_OBJECT_CLASS dat ad ass = CKO _DATA,
CK_CHAR application[] = {“My Application};
CK_BYTE dataVvalue[] ={...};
CK_BYTE value[] ={...};
CK_BYTE true = TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &dataClass, sizeof(dataClass)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_APPLICATION, application, sizeof(application)},
{CKA _VALUE, value, sizeof(value)}

CK_ULONG ulSize:
CK_RV rv;

rv = C_CreateObject(hSession, &template, 4, &nhObject);
if (rv == CKR_OK) {

rv = C_GetObjectSize(hSession, hObject, &ulSize);

if (rv '= CKR_INFORMATION_SENSITIVE) {

}
rv = C_DestroyObject(hSession, hObject);

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 156

¢ C _GetAttributeValue

CK_DEFI NE_FUNCTI ON(CK_RV, C CGetAttri buteVal ue) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

) ;

C_GetAttributeValue obtains the value of one or more attributes of an object. hSession

is the session’s handleQbject is the object’s handlggTemplate points to a template that
specifies which attribute values are to be obtained, and receives the attribute values;
ulCount is the number of attributes in the template.

For each tipe, pValue, ulValueLen) triple in the templateC_GetAttributeValue
performs the following algorithm:

1. If the specified attributei.€., the attribute specified by thgpe field) for the object
cannot be revealed because the object is sensitive or unextractable, then the
ulValueLen field in that triple is modified to hold the value iX(when it is cast to a
CK_LONG, it holds -1).

2. Otherwise, if the specified attribute for the object is invalid (the object does not
possess such an attribute), thenuhéluelLen field in that triple is modified to hold
the value -1.

3. Otherwise, if thgoValue field has the value NULL_PTR, then tbhl®/alueLen field is
modified to hold the exact length of the specified attribute for the object.

4. Otherwise, if the length specified utValueLen is large enough to hold the value of
the specified attribute for the object, then that attribute is copied into the buffer
located apValue, and theulValuelen field is modified to hold the exact length of the
attribute.

5. Otherwise, thellVValuelLen field is modified to hold the value -1.

If case 1 applies to any of the requested attributes, then the call should return the value
CKR_ATTRIBUTE_SENSITIVE. If case 2 applies to any of the requested attributes,
then the call should return the value CKR_ATTRIBUTE_TYPE_INVALID. If case 5
applies to any of the requested attributes, then the call should return the value
CKR_BUFFER_TOO_SMALL. As usual, if more than one of these error codes is
applicable, Cryptoki may return any of them. Only if none of them applies to any of the
requested attributes will CKR_OK be returned.

Note that the error codes CKR_ATTRIBUTE_SENSITIVE,
CKR_ATTRIBUTE_TYPE_INVALID, and CKR_BUFFER_TOO_SMALL do not
denote true errors fa_GetAttributeValue. If a call toC_GetAttributeValue returns
any of these three values, then the call must nonetheless have pregessatiribute in

Copyright © 1994-1999 RSA Laboratories

Page 157

the template supplied to C_GetAttributeValue. Each attribute in the template whose
value can be returned by the call to C_GetAttributeValue will be returned by the call to
C_GetAttributevalue.

Return values; CKR_ATTRIBUTE_SENSITIVE,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_BUFFER TOO SMALL,
CKR_CRYPTOKI|_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

CKR_OBJECT HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hQbj ect ;
CK_BYTE_PTR pModul us, pExponent;
CK_ATTRI BUTE tenplate[] = {
{CKA_MODULUS, NULL_PTR, 0},

{ CKA_PUBLI C_EXPONENT, NULL_PTR, 0}

};
CK_ RV rv;

rv = C_GetAttributeVal ue(hSessi on, hCbject, & enplate,
2);
if (rv == CKR_OK)
pModul us = (CK _BYTE_PTR)
mal | oc(tenpl at e[0] . ul Val ueLen);
tenpl at e[0] . pVal ue = pMbdul us;
/* tenpl ate[0] .ul Val ueLen was set by
C GetAttributeval ue */

pExponent = (CK BYTE _PTR)
mal | oc(tenpl at e[1] . ul Val ueLen);
tenpl at e[1] . pVal ue = pExponent;
/* tenpl ate[1] . ul Val ueLen was set by
C GetAttributeval ue */

rv = C Get Attri but eVal ue(hSessi on, hCbject, & enplate,
2);

if (rv == CKR_K) {

}
free(pMdul us);

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 158

free(pExponent);

¢ C_SetAttributeValue

CK_DEFI NE_FUNCTI ON(CK_RV, C SetAttri buteVal ue) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

) ;

C_SetAttributeValue modifies the value of one or more attributes of an object. hSession

is the session’s handleQbject is the object’s handlggTemplate points to a template that
specifies which attribute values are to be modified and their new val@esint is the
number of attributes in the template.

Only session objects can be modified during a read-only session.

The template may specify new values for any attributes of the object that can be modified.
If the template specifies a value of an attribute which is incompatible with other existing
attributes of the object, the call fails with the return code
CKR_TEMPLATE_INCONSISTENT.

Not all attributes can be modified; see Section 9.7 for more details.

Return values: CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_ARGUMENTS_BAD, CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hQbj ect;
CK_UTF8CHAR label[] = {*"New label};
CK_ATTRIBUTE template[] = {
CKA_LABEL, label, sizeof(label)-1

éK_RV rv;

Copyright © 1994-1999 RSA Laboratories

Page 159

rv = C _Set Attri buteVal ue(hSessi on, hCbject, & enplate,
1);
if (rv == CKR_.OK) {

}

¢ C_FindObjectsl nit

CK_DEFI NE_FUNCTI ON(CK_RV, C_FindObjectslnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

) ;

C_FindObjectslnit initializes a search for token and session objects that match a
template. hSession is the session’s handl@Template points to a search template that
specifies the attribute values to matalCount is the number of attributes in the search
template. The matching criterion is an exact byte-for-byte match with all attributes in the
template. To find all objects, saCount to 0.

After calling C_FindObjectsl nit, the application may call FindObjects one or more
times to obtain handles for objects matching the template, and then eventually call
C_FindObjectsFinal to finish the active search operation. At most one search operation
may be active at a given time in a given session.

The object search operation will only find objects that the session can view. For example,
an object search in an “R/W Public Session” will not find any private objects (even if one
of the attributes in the search template specifies that the search is for private objects).

If a search operation is active, and objects are created or destroyed which fit the search
template for the active search operation, then those objects may or may not be found by
the search operation. Note that this means that, under these circumstances, the search
operation may return invalid object handles.

Even though C_FindObjectsl nit can return the values
CKR_ATTRIBUTE_TYPE_INVALID and CKR_ATTRIBUTE_VALUE_INVALID, it

is not required to. For example, if it is given a search template with nonexistent attributes
in it, it can return CKR_ATTRIBUTE_TYPE_INVALID, or it can initialize a search
operation which will match no objects and return CKR_OK.

Return values: CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 160

Example: see C_FindObjectsFinal.

¢ C _FindObjects

CK_DEFI NE_FUNCTI ON(CK_RV, C_Fi ndObj ect s) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE_PTR phQbj ect,

CK_ULONG ul MaxQbj ect Count ,
CK_ULONG PTR pul Obj ect Count

) ;

C_FindObjects continues a search for token and session objects that match a template,
obtaining additional object handles. hSession is the session’s handlphObject points to
the location that receives the list (array) of additional object handMsxObjectCount
is the maximum number of object handles to be returpal@bjectCount points to the
location that receives the actual number of object handles returned.

If there are no more objects matching the template, then the locatigult®biectCount
points to receives the value 0.

The search must have been initialized v@thH-indObjectsl nit.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.

Example: se€_ FindObjectsFinal.

¢ C_FindObjectsFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C_Fi ndObj ect sFi nal) (
CK_SESSI ON_HANDLE hSessi on

) ;

C_FindObjectsFinal terminates a search for token and session objé&sssion is the
session’s handle.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_HANDLE hSessi on;

Copyright © 1994-1999 RSA Laboratories

Page 161

CK_OBJECT_HANDLE hObj ect ;
CK_ULONG ul nj ect Count ;
CK RV rv;

rv = C FindObjectslnit(hSession, NULL _PTR, 0);
assert(rv == CKR_(X);
while (1) {
rv = C_Fi ndObj ect s(hSession, &hObject, 1,
&ul Obj ect Count) ;
If (rv = CKR. K || ul ObjectCount == 0)
br eak;

}

rv = C_Fi ndObj ect sFi nal (hSessi on);
assert(rv == CKR_X);

11.8 Encryption functions

Cryptoki provides the following functions for encrypting data:

¢ C_Encryptlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C _Encryptlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

) ;

C_Encryptlnit initializes an encryption operation. hSession is the session’s handle;
pMechanism points to the encryption mechanishisey is the handle of the encryption
key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key
supports encryption, must be TRUE.

After callingC_Encryptlnit, the application can either cé@l Encrypt to encrypt data in

a single part; or callC_EncryptUpdate zero or more times, followed by
C_EncryptFinal, to encrypt data in multiple parts. The encryption operation is active
until the application uses a call @ Encrypt or C_EncryptFinal to actually obtain the

final piece of ciphertext. To process additional data (in single or multiple parts), the
application must calC_Encryptlnit again.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 162

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_ MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER NOT_LOGGED _IN.

Example: see C_EncryptFinal.

¢ C _Encrypt

CK_DEFI NE_FUNCTI ON(CK_RV, C _Encrypt) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pEncr ypt edDat a,
CK_ULONG_PTR pul Encrypt edDat aLen

) ;

C_Encrypt encrypts single-part data. hSession is the session’s handlpData points to
the data;ulDatalLen is the length in bytes of the dataEncryptedData points to the
location that receives the encrypted datdEncryptedDatalen points to the location that
holds the length in bytes of the encrypted data.

C_Encrypt uses the convention described in Section 11.2 on producing output.

The encryption operation must have been initialized \@tlEncryptinit. A call to
C_Encrypt always terminates the active encryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful cale(one which returns CKR_OK)

to determine the length of the buffer needed to hold the ciphertext.

C Encrypt can not be used to terminate a multi-part operation, and must be called after
C Encryptlnit without intervenindC EncryptUpdate calls.

For some encryption mechanisms, the input plaintext data has certain length constraints
(either because the mechanism can only encrypt relatively short pieces of plaintext, or
because the mechanism’s input data must consist of an integral number of blocks). If
these constraints are not satisfied, th€nEncrypt will fail with return code
CKR_DATA_LEN_RANGE.

The plaintext and ciphertext can be in the same plaee,it is OK if pData and
pEncryptedData point to the same location.

Copyright © 1994-1999 RSA Laboratories

Page 163

For most mechanisms, C_Encrypt is equivalent to a sequence of C_EncryptUpdate
operations followed by C_EncryptFinal.

Return values: CKR_BUFFER_TOO SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ ARGUMENTS BAD.

Example: see C_EncryptFinal for an example of similar functions.

¢ C_EncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C _Encrypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

) ;

C_EncryptUpdate continues a multiple-part encryption operation, processing another
data part. hSession is the session’s handlpPart points to the data pant|PartLen is the
length of the data panpEncryptedPart points to the location that receives the encrypted
data partpul EncryptedPartLen points to the location that holds the length in bytes of the
encrypted data part.

C_EncryptUpdate uses the convention described in Section 11.2 on producing output.

The encryption operation must have been initialized @itkncryptinit. This function

may be called any number of times in succession. A cdll ®ncryptUpdate which
results in an error other than CKR_BUFFER_TOO_SMALL terminates the current
encryption operation.

The encryption operation must have been initialized \@tlEncryptinit. A call to
C_Encrypt always terminates the active encryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful cale(one which returns CKR_OK)

to determine the length of the buffer needed to hold the ciphertext.

The plaintext and ciphertext can be in the same plaeg,it is OK if pPart and
pEncryptedPart point to the same location.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 164

CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS BAD.

Example: see C_EncryptFinal.

¢ C _EncryptFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C Encrypt Final) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pLast Encrypt edPart
CK_ULONG_PTR pul Last Encrypt edPart Len

) ;

C_EncryptFinal finishes a multiple-part encryption operation. hSession is the session’s
handle; pLastEncryptedPart points to the location that receives the last encrypted data
part, if any;pulLastEncryptedPartLen points to the location that holds the length of the
last encrypted data part.

C_EncryptFinal uses the convention described in Section 11.2 on producing output.

The encryption operation must have been initialized \@tlEncryptinit. A call to
C_EncryptFinal always terminates the active encryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful cale(one which returns CKR_OK)

to determine the length of the buffer needed to hold the ciphertext.

For some multi-part encryption mechanisms, the input plaintext data has certain length
constraints, because the mechanism’s input data must consist of an integral number of
blocks. If these constraints are not satisfied, BeBncryptFinal will fail with return

code CKR_DATA_LEN_RANGE.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.

Example:

#defi ne PLAI NTEXT_BUF_SZ 200
#defi ne Cl PHERTEXT_BUF_SZ 256

CK_ULONG firstPi eceLen, secondPi ecelLen;
CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;

CK_BYTE iv][8];

CK_MECHANI SM mechani sm = {

Copyright © 1994-1999 RSA Laboratories

Page 165

CKM_DES CBC PAD, iv, sizeof(iv)

CK_BYTE dat a[PLAI NTEXT_BUF_S7] ;

CK_BYTE encr ypt edDat a[Cl PHERTEXT _BUF_SZ] ;
CK_ULONG ul Encrypt edDat allen;

CK_ULONG ul Encrypt edDat a2Len;

CK_ULONG ul Encrypt edDat a3Len;

CK_ RV rv;

firstPieceLen = 90;
secondPi eceLen = PLAI NTEXT _BUF_SZ-firstPi eceLen;
rv = C Encryptlnit(hSession, &mechanism hKey);
if (rv == CKR_K) {
/* Encrypt first piece */
ul Encrypt edDat alLen = si zeof (encrypt edDat a) ;
rv = C_Encrypt Updat e(
hSessi on,
&dat a[0], firstPiecelLen
&encrypt edDat a[0], &ul Encrypt edDat allLen);
if (rv 1= CKR.OK) {

}

/* Encrypt second piece */
ul Encrypt edDat a2Len = si zeof (encrypt edDat a) -
ul Encrypt edDat allLen;
rv = C_Encrypt Updat e(
hSessi on,
&dat a[first Pi eceLen], secondPi ecelLen,
&encrypt edDat a[ul Encrypt edDat allLen],
&ul Encrypt edDat a2Len) ;
if (rv 1= CKR.OK) {

}

/* Get last little encrypted bit */
ul Encrypt edDat a3Len =
si zeof (encrypt edDat a) - ul Encr ypt edDat allLen-
ul Encrypt edDat a2Len;
rv = C_EncryptFi nal (
hSessi on,

&encrypt edDat a[ul Encr ypt edDat alLen+ul Encrypt edDat

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 166

a2len],
&ul Encr ypt edDat a3Len) ;
if (rv 1= CKR.OXK) {

}
}

11.9 Decryption functions

Cryptoki provides the following functions for decrypting data:

¢ C _Decryptlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Decryptlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

) ;

C_Decryptlnit initializes a decryption operation. hSession is the session’s handle;
pMechanism points to the decryption mechanishisey is the handle of the decryption
key.

The CKA_DECRYPT attribute of the decryption key, which indicates whether the key
supports decryption, must be TRUE.

After calling C_Decryptlnit, the application can either cé&l Decrypt to decrypt data in

a single part; or callC_DecryptUpdate zero or more times, followed by
C_DecryptFinal, to decrypt data in multiple parts. The decryption operation is active
until the application uses a call @ Decrypt or C_DecryptFinal to actually obtain the

final piece of plaintext. To process additional data (in single or multiple parts), the
application must calC_Decryptlnit again

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_ HANDLE_INVALID,
CKR_KEY_SIZE_ RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_ARGUMENTS_BAD.

Example: se€_DecryptFinal.

Copyright © 1994-1999 RSA Laboratories

Page 167

¢ C Decrypt

CK_DEFI NE_FUNCTI ON(CK_RV, C _Decrypt) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncr ypt edDat a,
CK_ULONG ul Encrypt edDat aLen,
CK_BYTE_PTR pDat a,

CK_ULONG_PTR pul Dat aLen
);

C_Decrypt decrypts encrypted data in a single part. hSession is the session’s handle;
pEncryptedData points to the encrypted dataEncryptedDatalen is the length of the
encrypted datgpData points to the location that receives the recovered galBatal en
points to the location that holds the length of the recovered data.

C_Decrypt uses the convention described in Section 11.2 on producing output.

The decryption operation must have been initialized W@tiecryptinit. A call to
C_Decrypt always terminates the active decryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful cale(one which returns CKR_OK)

to determine the length of the buffer needed to hold the plaintext.

C Decrypt can not be used to terminate a multi-part operation, and must be called after
C Decryptlnit without intervenindC DecryptUpdate calls.

The ciphertext and plaintext can be in the same plageijt is OK if pEncryptedData
andpData point to the same location.

If the input ciphertext data cannot be decrypted because it has an inappropriate length,
then either CKR_ENCRYPTED_DATA INVALID or
CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

For most mechanism&;_Decrypt is equivalent to a sequence ©f DecryptUpdate
operations followed b€ _DecryptFinal.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.

Example: se€_DecryptFinal for an example of similar functions.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 168

¢ C DecryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG _PTR pul PartLen

) ;

C_DecryptUpdate continues a multiple-part decryption operation, processing another

encrypted data part. hSession is the session’s handlgEncryptedPart points to the
encrypted data partylEncryptedPartLen is the length of the encrypted data paRart

points to the location that receives the recovered data mdRartLen points to the
location that holds the length of the recovered data part.

C_DecryptUpdate uses the convention described in Section 11.2 on producing output.

The decryption operation must have been initialized witBecryptinit. This function

may be called any number of times in succession. A cdll_fecryptUpdate which
results in an error other than CKR_BUFFER_TOO_SMALL terminates the current
decryption operation.

The ciphertext and plaintext can be in the same piaceit is OK if pEncryptedPart and
pPart point to the same location.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.

Example: Se€_DecryptFinal.

¢ C DecryptFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt Final) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pLast Part,
CK_ULONG _PTR pul Last PartLen

) ;

C_DecryptFinal finishes a multiple-part decryption operatidi&ession is the session’s
handle;pLastPart points to the location that receives the last recovered data part, if any;
pulLastPartLen points to the location that holds the length of the last recovered data part.

Copyright © 1994-1999 RSA Laboratories

Page 169

C_DecryptFinal uses the convention described in Section 11.2 on producing output.

The decryption operation must have been initialized with C_Decryptinit. A call to
C_DecryptFinal aways terminates the active decryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the plaintext.

If the input ciphertext data cannot be decrypted because it has an inappropriate length,
then either CKR_ENCRYPTED_DATA_INVALID or
CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

Return values: CKR_BUFFER_TOO SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED DATA_INVALID, CKR_ ENCRYPTED DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ ARGUMENTS BAD.

Example:

#defi ne Cl PHERTEXT_BUF_SZ 256
#defi ne PLAI NTEXT_BUF_SZ 256

CK_ULONG firstEncryptedPi eceLen, secondEncryptedPi ecelLen;
CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANI SM mechani sm = {
CKM_DES CBC PAD, iv, sizeof(iv)

¥

CK_BYTE dat a[PLAI NTEXT_BUF_SZ] ;

CK_BYTE encr ypt edDat a[Cl PHERTEXT _BUF_SZ] ;
CK_ULONG ul Dat alLen, ul Data2Len, ul Data3Len;
CK_ RV rv;

firstEncryptedPi eceLen = 90;
secondEncr ypt edPi eceLen = Cl PHERTEXT_BUF_SZ-
firstEncryptedPi ecelLen;
rv = C Decryptlnit(hSession, &rechanism hKey);
if (rv == CKR_.X) {
/| * Decrypt first piece */
ul Dat alLen = sizeof (data);
rv = C _Decrypt Updat e(
hSessi on,
&encrypt edDat a[0], firstEncryptedPi ecelLen,

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 170

&dat a[0], &ul DatallLen);
if (rv 1= CKR. K) {

}

/| * Decrypt second piece */
ul Dat a2Len = si zeof (dat a) - ul Dat allLen;
rv = C _Decrypt Updat e(
hSessi on,
&encrypt edDat a[fi rst Encrypt edPi eceLen],
secondEncr ypt edPi ecelLen,
&dat a[ul Dat alLen], &ul Data2lLen);
if (rv 1= CKR.OK) {

}

/* Get last little decrypted bit */
ul Dat a3Len = si zeof (dat a) - ul Dat alLen- ul Dat a2Len;
rv = C_DecryptFi nal (
hSessi on,
&dat a[ul Dat alLen+ul Dat a2Len], &ul Dat a3Len);
if (rv I'= CKR.K) {

}
}

11.10 Message digesting functions

Cryptoki provides the following functions for digesting data:

¢ C_Digestlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Digestlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM _PTR pMechani sm

) ;

C_DigestInit initializes a message-digesting operation. hSession is the session’s handle;
pMechanism points to the digesting mechanism.

After calling C_DigestInit, the application can either c&l Digest to digest data in a
single part; or calC_DigestUpdate zero or more times, followed &y DigestFinal, to
digest data in multiple parts. The message-digesting operation is active until the

Copyright © 1994-1999 RSA Laboratories

Page 171

application usesacall to C_Digest or C_DigestFinal to actually obtain the final piece of
ciphertext. To process additional data (in single or multiple parts), the application must
cal C_Digestlnit again.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,

CKR_USER _NOT_LOGGED_IN, CKR_ARGUMENTS BAD.

Example: see C_DigestFinal.

¢ C Digest

CK_DEFI NE_FUNCTI ON(CK_RV, C Digest) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pbDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pDi gest,
CK_ULONG_PTR pul Di gest Len
);

C_Digest digests data in a single part. hSession is the session’s handlpData points to
the dataulDatalLen is the length of the dataDigest points to the location that receives
the message digespulDigestLen points to the location that holds the length of the
message digest.

C_Digest uses the convention described in Section 11.2 on producing output.

The digest operation must have been initialized Witibigestinit. A call toC_Digest
always terminates the active digest operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful cale(one which returns CKR_OK)

to determine the length of the buffer needed to hold the message digest.

C Digest can not be used to terminate a multi-part operation, and must be called after
C Digestlnit without intervenindC DigestUpdate calls.

The input data and digest output can be in the same placet is OK if pData and
pDigest point to the same location.

C_Digest is equivalent to a sequence 6f DigestUpdate operations followed by
C_DigestFinal.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 172

CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ ARGUMENTS BAD.

Example: see C_DigestFinal for an example of similar functions.

¢ C DigestUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C _Di gest Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen

) ;

C_DigestUpdate continues a multiple-part message-digesting operation, processing
another data part. hSession is the session’s handlg@Part points to the data part;
ulPartLen is the length of the data part.

The message-digesting operation must have been initializedowidingestI nit. Calls to
this function andC_DigestK ey may be interspersed any number of times in any order. A
call toC_DigestUpdate which results in an error terminates the current digest operation.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.

Example: se€_DigestFinal.

¢ C DigestKey

CK_DEFI NE_FUNCTI ON(CK_RV, C _Di gest Key) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hKey

) ;

C_DigestKey continues a multiple-part message-digesting operation by digesting the
value of a secret keyhSession is the session’s handleKey is the handle of the secret
key to be digested.

The message-digesting operation must have been initialized>widigesti nit. Calls to
this function andC_DigestUpdate may be interspersed any number of times in any order.

Copyright © 1994-1999 RSA Laboratories

Page 173

If the value of the supplied key cannot be digested purely for some reason related to its
length, C_DigestK ey should return the error code CKR_KEY _SIZE RANGE.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_HANDLE_INVALID, CKR_KEY_INDIGESTIBLE,
CKR_KEY_SIZE_RANGE, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

¢ C DigestFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C DigestFinal)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDi gest,
CK_ULONG_PTR pul Di gest Len

);

C_DigestFinal finishes a multiple-part message-digesting operation, returning the
message digest. hSession is the session’s handl@Digest points to the location that
receives the message diggsitDigestLen points to the location that holds the length of
the message digest.

C_DigestFinal uses the convention described in Section 11.2 on producing output.

The digest operation must have been initialized w@hDigestinit. A call to
C_DigestFinal always terminates the active digest operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful cale(one which returns CKR_OK)

to determine the length of the buffer needed to hold the message digest.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.

Example:
CK_SESSI ON_HANDLE hSessi on;
CK_MECHANI SM mechani sm = {
CKM_MD5, NULL_PTR, O

CK_BYTE data[] = {...}:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_BYTE di gest|[16];
CK_ULONG ul Di gest Len;
CK RV rv;

.rv = C Digestlnit(hSession, &mrechanisn);
if (rv 1= CKR.OK) {

}

rv = C_Di gestUpdat e(hSession, data, sizeof(data));
if (rv = CKR.K) {

}

rv = C_Di gestKey(hSession, hKey);
if (rv 1= CKR.OK) {

}

ul D gest Len = si zeof (di gest);
rv = C _DigestFinal (hSession, digest, &ulDigestLen);

11.11 Signing and MACing functions

174

Cryptoki provides the following functions for signing data (for the purposes of Cryptoki,

these operations a so encompass message authentication codes):

¢ C_Signinit

CK_DEFI NE_FUNCTI ON(CK_RV, C Signlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

) ;

Copyright © 1994-1999 RSA Laboratories

Page 175

C_Signinit initializes a signature operation, where the signature is an appendix to the
data. hSession is the session’s handlpMechanism points to the signature mechanism;
hKey is the handle of the signature key.

The CKA_SIGN attribute of the signature key, which indicates whether the key supports
signatures with appendix, must be TRUE.

After calling C_Signlnit, the application can either c&l Sign to sign in a single part;

or call C_SignUpdate one or more times, followed b§_SignFinal, to sign data in
multiple parts. The signature operation is active until the application uses a call to
C_Sign or C_SignFinal to actually obtain the signature. To process additional data (in
single or multiple parts), the application must €llSignInit again.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED,CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_ RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_ARGUMENTS_BAD.

Example: se€_SignFinal.

¢ C _Sign

CK_DEFI NE_FUNCTI ON(CK_RV, C_Sign) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pbDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG_PTR pul Si gnat ureLen

) ;

C_Sign signs data in a single part, where the signature is an appendix to the data.
hSession is the session’s handlpData points to the datajlDatalen is the length of the
data;pSgnature points to the location that receives the signatoukSignaturelLen points

to the location that holds the length of the signature.

C_Sign uses the convention described in Section 11.2 on producing output.

The signing operation must have been initialized v@tisigninit. A call to C_Sign
always terminates the active signing operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful cale(one which returns CKR_OK)

to determine the length of the buffer needed to hold the signature.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 176

C Sign can not be used to terminate a multi-part operation, and must be called after
C Signlnit without intervening C SignUpdate calls.

For most mechanisms, C_Sign is equivalent to a sequence of C_SignUpdate operations
followed by C_SignFinal.

Return values: CKR_BUFFER_TOO SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ ARGUMENTS BAD.

Example: see C_SignFinal for an example of similar functions.

¢ C _SignUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnUpdat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,

CK_ULONG ul PartLen

) ;

C_SignUpdate continues a multiple-part signature operation, processing another data
part. hSession is the session’s handlePart points to the data partiPartLen is the
length of the data part.

The signature operation must have been initialized @itBignInit. This function may
be called any number of times in succession. A cal _tBignUpdate which results in
an error terminates the current signature operation.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.

Example: se€_SignFinal.

Copyright © 1994-1999 RSA Laboratories

Page 177

¢ C _SignFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C _SignFinal)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,

CK_ULONG_PTR pul Si gnat ureLen

) ;

C_SignFinal finishes a multiple-part signature operation, returning the signature.
hSession is the session’s handl@Sgnature points to the location that receives the
signature pulSgnaturelLen points to the location that holds the length of the signature.

C_SignFinal uses the convention described in Section 11.2 on producing output.

The signing operation must have been initialized w@hSigninit. A call to
C_SignFinal always terminates the active signing operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful cale(one which returns CKR_OK)

to determine the length of the buffer needed to hold the signature.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nechani sm = {
CKM DES MAC, NULL_PTR, O

CK BYTE data[] ={...};
CK_BYTE nmac| 4] ;
CK_ULONG ul MacLen;

CK RV rv;

.rv = C_Signlnit(hSession, &rechanism hKey);
if (rv == CKR_.OX) {
rv = C_SignUpdat e(hSessi on, data, sizeof(data));

L|| MacLen = sizeof (mac);
rv = C_SignFinal (hSession, mac, &ul MacLen);

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 178

}

¢ C_SignRecover|nit

CK_DEFI NE_FUNCTI ON(CK_RV, C_SignRecoverlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

) ;

C_SignRecoverInit initializes a signature operation, where the data can be recovered
from the signature. hSession is the session’s handlpMechanism points to the structure
that specifies the signature mechanibKey is the handle of the signature key.

TheCKA_SIGN_RECOVER attribute of the signature key, which indicates whether the
key supports signatures where the data can be recovered from the signature, must be
TRUE.

After calling C_SignRecoverinit, the application may call_SignRecover to sign in a
single part. The signature operation is active until the application uses a call to
C_SignRecover to actually obtain the signature. To process additional data in a single
part, the application must c&ll SignRecoverInit again.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_ HANDLE_INVALID,
CKR_KEY_SIZE_ RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_ARGUMENTS_BAD.

Example: se€_SignRecover .

Copyright © 1994-1999 RSA Laboratories

Page 179

¢ C_SignRecover

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnRecover) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDat a,
CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG_PTR pul Si gnat ureLen

) ;

C_SignRecover signs data in a single operation, where the data can be recovered from

the signature. hSession is the session’s handlgData points to the datajLDatalen is the
length of the datapSgnature points to the location that receives the signature;
pul SgnaturelLen points to the location that holds the length of the signature.

C_SignRecover uses the convention described in Section 11.2 on producing output.

The signing operation must have been initialized v@tiSignRecoverinit. A call to
C_SignRecover always terminates the active signing operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful cale(one which returns CKR_OK)

to determine the length of the buffer needed to hold the signature.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nechani sm = {
CKM_RSA 9796, NULL_PTR, O

CK BYTE data[] ={...};
CK_BYTE si gnature[128];
CK_ULONG ul Si gnat ur eLen;
CK RV rv;

rv = C_SignRecoverlnit(hSession, &rechanism hKey);
if (rv == CKR_.X) {

ul Si gnat ureLen = si zeof (signature);

rv = C_Si gnRecover (

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 180

hSessi on, data, sizeof(data), signature,
&ul Si gnat ur eLen) ;
if (rv == CKR_.OK) {

}
}

11.12 Functionsfor verifying signaturesand MACs

Cryptoki provides the following functions for verifying signatures on data (for the
purposes of Cryptoki, these operations also encompass message authentication codes):

¢ C Veifylnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Verifylnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

) ;

C_Verifylnit initializes a verification operation, where the signature is an appendix to
the data hSession is the session’s handlgMechanism points to the structure that
specifies the verification mechanishiKey is the handle of the verification key.

The CKA_VERIFY attribute of the verification key, which indicates whether the key
supports verification where the signature is an appendix to the data, must be TRUE.

After calling C_Verifylnit, the application can either c&l Verify to verify a signature

on data in a single part; or call VerifyUpdate one or more times, followed by
C_VerifyFinal, to verify a signature on data in multiple parts. The verification operation
is active until the application callS_Verify or C_VerifyFinal. To process additional
data (in single or multiple parts), the application mustCa\llerifylnit again.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_ HANDLE_INVALID,
CKR_KEY_SIZE_ RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_ARGUMENTS_BAD.

Example: se€_VerifyFinal.

Copyright © 1994-1999 RSA Laboratories

Page 181

¢ C Veify

CK_DEFI NE_FUNCTI ON(CK_RV, C Verify)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat ur eLen

) ;

C_Verify verifies a signature in a single-part operation, where the signature is an
appendix to the data. hSession is the session’s handlggData points to the data;
ulDatalLen is the length of the datpSgnature points to the signaturejSgnatureLen is
the length of the signature.

The verification operation must have been initialized withverifylnit. A call to
C_Verify always terminates the active verification operation.

A successful call t&€_Verify should return either the value CKR_OK (indicating that the
supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the
supplied signature is invalid). If the signature can be seen to be invalid purely on the
basis of its length, then CKR_SIGNATURE_LEN_RANGE should be returned. In any
of these cases, the active signing operation is terminated.

C Verify can not be used to terminate a multi-part operation, and must be called after
C Veifylnit without intervenindC VerifyUpdate calls.

For most mechanismsC_Verify is equivalent to a sequence 6f VerifyUpdate
operations followed b€ _VerifyFinal.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE, CKR_ARGUMENTS_BAD.

Example: se€_VerifyFinal for an example of similar functions.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 182

¢ C VeifyUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyUpdate) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen

) ;

C_VerifyUpdate continues a multiple-part verification operation, processing another
data part. hSession is the session’s handlpRart points to the data pant|PartLen is the
length of the data part.

The verification operation must have been initialized v@thVerifylnit. This function
may be called any number of times in succession. A cdl _tderifyUpdate which
results in an error terminates the current verification operation.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.

Example: se€_VerifyFinal.

¢ C VeifyFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyFinal)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat ur eLen

) ;

C_VerifyFinal finishes a multiple-part verification operation, checking the signature.
hSession is the session’s handlpSgnature points to the signature SgnatureLen is the
length of the signature.

The verification operation must have been initialized withverifylnit. A call to
C_VerifyFinal always terminates the active verification operation.

A successful call t&€_VerifyFinal should return either the value CKR_OK (indicating
that the supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the
supplied signature is invalid). If the signature can be seen to be invalid purely on the
basis of its length, then CKR_SIGNATURE_LEN_RANGE should be returned. In any
of these cases, the active verifying operation is terminated.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,

Copyright © 1994-1999 RSA Laboratories

Page 183

CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE, CKR_ ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nechani sm = {
CKM DES MAC, NULL_PTR, O

CK_BYTE data[] = {...}:

CK_BYTE mac| 4] ;
CK_ RV rv;

rv = C Verifylnit(hSession, &rechanism hKey);
if (rv == CKR_K)
rv = C VerifyUpdat e(hSession, data, sizeof(data));

'rv = C VerifyFinal (hSession, mac, sizeof(nmac));

}

¢ C _VeifyRecoverInit

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyRecoverlinit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

) ;

C_VerifyRecoverInit initializes a signature verification operation, where the data is
recovered from the signature. hSession is the session’s handlpMechanism points to the
structure that specifies the verification mechanisigy is the handle of the verification
key.

The CKA_VERIFY_RECOVER attribute of the verification key, which indicates
whether the key supports verification where the data is recovered from the signature, must
be TRUE.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 184

After calling C_VerifyRecoverInit, the application may call C_VerifyRecover to verify
a signature on data in a single part. The verification operation is active until the
application usesacall to C_VerifyRecover to actually obtain the recovered message.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_ MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_ NOT_LOGGED IN,
CKR_ARGUMENTS BAD.

Example: see C_VerifyRecover.

¢ C VeifyRecover

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyRecover) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat ur eLen,
CK_BYTE_PTR pDat a,
CK_ULONG_PTR pul Dat aLen
);

C_VerifyRecover verifies a signature in a single-part operation, where the data is
recovered from the signature. hSession is the session’s handlpSgnature points to the
signatureulSgnatureLen is the length of the signatuneData points to the location that
receives the recovered data; @uDatal.en points to the location that holds the length of
the recovered data.

C_VerifyRecover uses the convention described in Section 11.2 on producing output.

The verification operation must have been initialized W@ty erifyRecover I nit. A call

to C_VerifyRecover always terminates the active verification operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful cale(one which returns CKR_OK)

to determine the length of the buffer needed to hold the recovered data.

A successful call toC_VerifyRecover should return either the value CKR_OK
(indicating that the supplied signature is valid) or CKR_SIGNATURE_INVALID
(indicating that the supplied signature is invalid). If the signature can be seen to be
invalid purely on the basis of its length, then CKR_SIGNATURE_LEN_RANGE should
be returned. The return codes CKR_SIGNATURE_INVALID and
CKR_SIGNATURE_LEN_RANGE have a higher priority than the return code

Copyright © 1994-1999 RSA Laboratories

Page 185

CKR_BUFFER_TOO_SMALL, i.e, if C_VerifyRecover is supplied with an invalid
signature, it will never return CKR_BUFFER_TOO_SMALL.

Return values: CKR_BUFFER_TOO SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_LEN_RANGE,
CKR_SIGNATURE_INVALID, CKR_ ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nechani sm = {
CKM_RSA 9796, NULL_PTR, O

CK BYTE data[] ={...};
CK_ULONG ul Dat aLen;
CK_BYTE si gnat ure[128] ;
CK RV rv;

rv = C VerifyRecoverlnit(hSession, &rechani sm hKey);
if (rv == CKR_OK)
ul Dat aLen = si zeof (data);
rv = C VerifyRecover (
hSessi on, signature, sizeof(signature), data,
&ul Dat aLen) ;

}

11.13 Dual-function cryptographic functions

Cryptoki provides the following functions to perform two cryptographic operations
“simultaneously” within a session. These functions are provided so as to avoid
unnecessarily passing data back and forth to and from a token.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 186

¢ C _DigestEncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C Di gest Encrypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

) ;

C_DigestEncryptUpdate continues multiple-part digest and encryption operations,
processing another data part. hSession is the session’s handlpPart points to the data
part; ulPartLen is the length of the data papEncryptedPart points to the location that
receives the digested and encrypted data palEncryptedPartLen points to the location
that holds the length of the encrypted data part.

C_DigestEncryptUpdate uses the convention described in Section 11.2 on producing
output. If aC_DigestEncryptUpdate call does not produce encrypted output (because
an error occurs, or becaugpkEncryptedPart has the value NULL_PTR, or because
pulEncryptedPartLen is too small to hold the entire encrypted part output), then no
plaintext is passed to the active digest operation.

Digest and encryption operations must both be active (they must have been initialized
with C_Digestlnit andC_Encryptlnit, respectively). This function may be called any
number of times in succession, and may be interspersed @QibbigestUpdate,
C_DigestkKey, and C_EncryptUpdate calls (it would be somewhat unusual to
intersperse calls t8_DigestEncryptUpdate with calls toC_DigestK ey, however).

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.

Example:
#define BUF_SzZ 512

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_BYTE iv[8];

CK_MECHANI SM di gest Mechani sm = {
CKM_MD5, NULL_PTR, O

1

CK_MECHANI SM encrypti onMechani sm = {
CKM DES ECB, iv, sizeof(iv)

1

CK_BYTE encrypt edDat a[BUF_SZ] ;

Copyright © 1994-1999 RSA Laboratories

Page 187

CK_ULONG ul Encrypt edDat aLen;
CK_BYTE di gest|[16];

CK_ULONG ul Di gest Len;
CK_BYTE dat a[(2* BUF_SZ) +8] ;
CK RV rv;

int i;

menset (iv, 0, sizeof(iv));

memset(data, ‘A’, ((2*BUF_SZ)+5));

rv = C_Encryptinit(hSession, &encryptionMechanism, hKey);
if (rv 1= CKR_OK) {

rv = C_Digestlnit(hSession, &digestMechanism);
if (rv 1= CKR_OK) {

}
ulEncryptedDatalen = sizeof(encryptedData);
rv = C_DigestEncryptUpdate(

hSession,

&data[0], BUF_SZ,
encryptedData, &ulEncryptedDatalen);

ulEncryptedDatalen = sizeof(encryptedData);
rv = C_DigestEncryptUpdate(

hSession,

&data[BUF_SZ], BUF_SZ,

encryptedData, &ulEncryptedDatalen);

/*
* The last portion of the buffer needs to be handled
with
* separate calls to deal with padding issues in ECB mode
*/

[* First, complete the digest on the buffer */
rv = C_DigestUpdate(hSession, &data[BUF_SZ*2], 5);

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

L|| Di gestLen = si zeof (di gest);
rv = C_DigestFinal (hSession, digest, &ulDi gestLen);

/* Then, pad last part with 3 0x00 bytes, and conpl ete
encryption */
for(i=0;i<3;i++)
dat a[((BUF_Sz*2) +5) +i] = 0xO00;

/* Now, get second-to-l|ast piece of ciphertext */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Encrypt Updat e(

hSessi on,

&dat a[BUF_Sz*2], 8,

encrypt edDat a, &ul Encrypt edDat aLen);

/* Get l|ast piece of ciphertext (should have | ength O,
here) */

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;

rv = C _Encrypt Fi nal (hSessi on, encryptedDat a,
&ul Encrypt edDat aLen) ;

¢ C DecryptDigestUpdate

188

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt Di gest Updat e) (

) ;

CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,

CK_ULONG _PTR pul PartLen

C_DecryptDigestUpdate continues a multiple-part combined decryption and digest
operation, processing another data part. hSession is the session’s handlpEncryptedPart
points to the encrypted data paitEncryptedPartLen is the length of the encrypted data
part; pPart points to the location that receives the recovered datapoéPgrtLen points
to the location that holds the length of the recovered data part.

Copyright © 1994-1999 RSA Laboratories

Page 189

C_DecryptDigestUpdate uses the convention described in Section 11.2 on producing
output. If aC_DecryptDigestUpdate call does not produce decrypted output (because an
error occurs, or because pPart has the value NULL_PTR, or because pulPartLen is too
small to hold the entire decrypted part output), then no plaintext is passed to the active
digest operation.

Decryption and digesting operations must both be active (they must have been initialized
with C_Decryptinit and C_DigestInit, respectively). This function may be caled any
number of times in succession, and may be interspersed with C_DecryptUpdate,
C_DigestUpdate, and C_DigestKey calls (it would be somewhat unusual to intersperse
callsto C_DigestEncryptUpdate with callsto C_DigestK ey, however).

Use of C_DecryptDigestUpdate involves a pipelining issue that does not arise when

using C_DigestEncryptUpdate, the “inverse function” ofC_DecryptDigestUpdate.

This is because whe@_ DigestEncryptUpdate is called, precisely the same input is
passed to both the active digesting operation and the active encryption operation;
however, whenC_DecryptDigestUpdate is called, the input passed to the active
digesting operation is thautput of the active decryption operation. This issue comes up
only when the mechanism used for decryption performs padding.

In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte
plaintext with DES in CBC mode with PKCS padding. Consider an application which
will simultaneously decrypt this ciphertext and digest the original plaintext thereby
obtained.

After initializing decryption and digesting operations, the application passes the 24-byte
ciphertext (3 DES blocks) int€ DecryptDigestUpdate. C_DecryptDigestUpdate
returns exactly 16 bytes of plaintext, since at this point, Cryptoki doesn’t know if there’s
more ciphertext coming, or if the last block of ciphertext held any padding. These 16
bytes of plaintext are passed into the active digesting operation.

Since there is no more ciphertext, the application dallDecryptFinal. This tells
Cryptoki that there’s no more ciphertext coming, and the call returns the last 2 bytes of
plaintext. However, since the active decryption and digesting operations aredimked
through theC_DecryptDigestUpdate call, these 2 bytes of plaintext aret passed on to

be digested.

A call to C_DigestFinal, therefore, would compute the message digeshefirst 16

bytes of the plaintext, not the message digest of the entire plaintext. It is crucial that,
before C_DigestFinal is called, the last 2 bytes of plaintext get passed into the active
digesting operation via@_DigestUpdate call.

Because of this, it is critical that when an application uses a padded decryption
mechanism withC_DecryptDigestUpdate, it knows exactly how much plaintext has
been passed into the active digesting operati&mtreme caution is warranted when

using a padded decryption mechanismwith C_DecryptDigestUpdate.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 190

Return values: CKR_BUFFER_TOO SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED DATA_INVALID, CKR_ ENCRYPTED DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ ARGUMENTS BAD.

Example:
#define BUF_Sz 512

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_BYTE iv[8];

CK_MECHANI SM decr ypti onMechani sm = {

CKM_DES_ECB, iv, sizeof(iv)

1

CK_MECHANI SM di gest Mechani sm = {
CKM_MD5, NULL_PTR, O

CK_BYTE encrypt edDat a[(2* BUF_SZ) +8] ;
CK_BYTE di gest|[16];

CK_ULONG ul Di gest Len;

CK_BYTE dat a[BUF_SZ] ;

CK_ULONG ul Dat aLen, ul Last Updat eSi ze;
CK RV rv;

menset (iv, 0, sizeof(iv));

memset(encryptedData, ‘A’, (2*BUF_SZ)+8));

rv = C_Decryptlnit(hSession, &decryptionMechanism, hKey);
if (rv I= CKR_OK) {

rv = C_Digestlnit(hSession, &digestMechanism);
if (rv = CKR_OK){

}
ulDataLen = sizeof(data);

rv = C_DecryptDigestUpdate(
hSession,

Copyright © 1994-1999 RSA Laboratories

Page 191

&encrypt edDat a[0], BUF_SZ,
data, &ul DatalLen);

ul Dat aLen = si zeof (data);

rv = C _Decrypt D gest Updat e(
hSessi on,
&encrypt edDat a[BUF_SZ], BUF_SZ,
data, &ul DatalLen);

/*

* The | ast portion of the buffer needs to be handl ed
with

* separate calls to deal with padding i ssues in ECB node

*/

/* First, conplete the decryption of the buffer */
ul Last Updat eSi ze = si zeof (data);
rv = C_Decrypt Updat e(

hSessi on,

&encrypt edDat a[BUF_SzZ* 2], 8,

data, &ul Last Updat eSi ze);

/* Get last piece of plaintext (should have |length O,
here) */

ul Dat aLen = si zeof (dat a) - ul Last Updat eSi ze;

rv = C_DecryptFinal (hSession, &data[ul Last Updat eSi ze],
&ul Dat aLen) ;

if (rv 1= CKR.OK) {

}

/* Digest last bit of plaintext */
rv = C_Di gest Updat e(hSessi on, &data[BUF_SzZ*2], 5);
if (rv 1= CKR.OK) {

ul Di gest Len = si zeof (di gest);
rv = C_DigestFinal (hSession, digest, &ulDi gestLen);
if (rv = CKR.K) {

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 192

}

¢ C_SignEncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnEncrypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

) ;

C_SignEncryptUpdate continues a multiple-part combined signature and encryption

operation, processing another data part. hSession is the session’s handlpPart points to
the data partulPartLen is the length of the data papEncryptedPart points to the
location that receives the digested and encrypted data panpudtetryptedPart points
to the location that holds the length of the encrypted data part.

C_SignEncryptUpdate uses the convention described in Section 11.2 on producing
output. If aC_SignEncryptUpdate call does not produce encrypted output (because an
error occurs, or becauspEncryptedPart has the value NULL _PTR, or because
pulEncryptedPartLen is too small to hold the entire encrypted part output), then no
plaintext is passed to the active signing operation.

Signature and encryption operations must both be active (they must have been initialized
with C_Signinit and C_Encryptlnit, respectively). This function may be called any
number of times in succession, and may be interspersed QviBignUpdate and
C_EncryptUpdate calls.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.

Example:
#define BUF_Sz 512

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hEncrypti onKey, hMacKey;
CK_BYTE iv[8];
CK_MECHANI SM si gnMechani sm = {

CKM DES_MAC, NULL_PTR, 0
1

Copyright © 1994-1999 RSA Laboratories

Page 193

CK_MECHANI SM encrypti onMechani sm = {
CKM DES ECB, iv, sizeof(iv)

1

CK_BYTE encr ypt edDat a[BUF_SZ] ;

CK_ULONG ul Encrypt edDat aLen;

CK_BYTE MAC 4] ;

CK_ULONG ul MacLen;

CK_BYTE dat a[(2* BUF_SZ) +8] ;

CK RV rv;

int i;

menset (iv, 0, sizeof(iv));

memset(data, ‘A’, ((2*BUF_SZ)+5));

rv = C_Encryptinit(hSession, &encryptionMechanism,
hEncryptionKey);

if (rv 1= CKR_OK) {

rv = C_Signlinit(hSession, &signMechanism, hMacKey);
if (rv I= CKR_OK) {

}
ulEncryptedDatalen = sizeof(encryptedData);
rv = C_SignEncryptUpdate(

hSession,

&data[0], BUF_SZ,
encryptedData, &ulEncryptedDatalLen);

ulEncryptedDatalen = sizeof(encryptedData);
rv = C_SignEncryptUpdate(

hSession,

&data[BUF_SZ], BUF_SZ,

encryptedData, &ulEncryptedDatalen);

/*
* The last portion of the buffer needs to be handled
with

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 194

* separate calls to deal with padding issues in ECB node
*/

/* First, conplete the signature on the buffer */
rv = C_SignUpdat e(hSessi on, &data[BUF_SzZ*2], 5);

Ll| MacLen = sizeof (MAC);
rv = C _DigestFinal (hSession, MAC, &ul MacLen);

/* Then pad | ast part with 3 0x00 bytes, and conplete
encryption */
for(i=0;i<3;i++)
dat a[((BUF_Sz*2) +5) +i] = 0xO00;

/* Now, get second-to-last piece of ciphertext */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Encrypt Updat e(

hSessi on,

&dat a[BUF_Sz*2], 8,

encrypt edDat a, &ul Encrypt edDat aLen);

/* Get |ast piece of ciphertext (should have | ength O,
here) */

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;

rv = C _EncryptFi nal (hSessi on, encryptedDat a,
&ul Encrypt edDat aLen) ;

¢ C DecryptVerifyUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt Veri fyUpdate) (

) ;

CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG PTR pul PartLen

C_DecryptVerifyUpdate continues a multiple-part combined decryption and verification
operation, processing another data part. hSession is the session’s handlpEncryptedPart

Copyright © 1994-1999 RSA Laboratories

Page 195

points to the encrypted data; ulEncryptedPartLen is the length of the encrypted data;
pPart points to the location that receives the recovered data; and pulPartLen points to the
location that holds the length of the recovered data.

C_DecryptVerifyUpdate uses the convention described in Section 11.2 on producing
output. If a C_DecryptVerifyUpdate call does not produce decrypted output (because
an error occurs, or because pPart has the value NULL_PTR, or because pulPartLen is too
small to hold the entire encrypted part output), then no plaintext is passed to the active
verification operation.

Decryption and signature operations must both be active (they must have been initialized
with C_DecryptInit and C_Verifylnit, respectively). This function may be caled any
number of times in succession, and may be interspersed with C_DecryptUpdate and
C_VerifyUpdate cdls.

Use of C_DecryptVerifyUpdate involves a pipelining issue that does not arise when

using C_SignEncryptUpdate, the “inverse function” o€_DecryptVerifyUpdate. This

Is because whe@_SignEncryptUpdate is called, precisely the same input is passed to
both the active signing operation and the active encryption operation; however, when
C_DecryptVerifyUpdate is called, the input passed to the active verifying operation is
the output of the active decryption operation. This issue comes up only when the
mechanism used for decryption performs padding.

In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte
plaintext with DES in CBC mode with PKCS padding. Consider an application which

will simultaneously decrypt this ciphertext and verify a signature on the original plaintext
thereby obtained.

After initializing decryption and verification operations, the application passes the 24-
byte ciphertext 3 DES blocks) into C_DecryptVerifyUpdate.
C_DecryptVerifyUpdate returns exactly 16 bytes of plaintext, since at this point,
Cryptoki doesn’t know if there’s more ciphertext coming, or if the last block of ciphertext
held any padding. These 16 bytes of plaintext are passed into the active verification
operation.

Since there is no more ciphertext, the application dallDecryptFinal. This tells
Cryptoki that there’s no more ciphertext coming, and the call returns the last 2 bytes of
plaintext. However, since the active decryption and verification operations are linked
only through theC_DecryptVerifyUpdate call, these 2 bytes of plaintext anet passed

on to the verification mechanism.

A call to C_VerifyFinal, therefore, would verify whether or not the signature supplied is
a valid signature otthe first 16 bytes of the plaintext, not on the entire plaintext. It is
crucial that, befor€€_VerifyFinal is called, the last 2 bytes of plaintext get passed into
the active verification operation viaGa VerifyUpdate call.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 196

Because of this, it is critical that when an application uses a padded decryption
mechanism with C_DecryptVerifyUpdate, it knows exactly how much plaintext has
been passed into the active verification operation. Extreme caution is warranted when
using a padded decryption mechanismwith C_DecryptVerifyUpdate.

Return values: CKR_BUFFER_TOO SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED DATA_LEN_RANGE, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ ARGUMENTS BAD.

Example:
#define BUF_SzZ 512

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hDecrypti onKey, hMacKey;
CK_BYTE iv[8];
CK_MECHANI SM decr ypti onMechani sm = {
CKM DES _ECB, iv, sizeof(iv)
¥
CK_MECHANI SM veri fyMechani sm = {
CKM DES_MAC, NULL_PTR, O
1
CK_BYTE encrypt edDat a[(2* BUF_SZ) +8] ;
CK_BYTE MAQ 4] ;
CK_ULONG ul MacLen;
CK_BYTE dat a[BUF_SZ] ;
CK_ULONG ul Dat aLen, ul Last Updat eSi ze;
CK RV rv;

menset (iv, 0, sizeof(iv));

memset(encryptedData, ‘A’, (2*BUF_SZ)+8));

rv = C_Decryptlnit(hSession, &decryptionMechanism,
hDecryptionKey);

if (rv 1= CKR_OK) {

rv = C_Verifylnit(hSession, &verifyMechanism, hMacKey);
if (rv I= CKR_OK){

Copyright © 1994-1999 RSA Laboratories

Page 197

}

ul Dat aLen = si zeof (dat a);

rv = C Decrypt VerifyUpdat e(
hSessi on,
&encrypt edDat a[0], BUF_SZ,
data, &ul DatalLen);

ul Dat aLen = si zeof (data);

rv = C _Decrypt VerifyUpdat e(
hSessi on,
&encrypt edDat a[BUF_SZ], BUF_SZ,
data, &ul datalLen);

/*

* The | ast portion of the buffer needs to be handl ed
with

* separate calls to deal with padding issues in ECB node

*/

/* First, conplete the decryption of the buffer */
ul Last Updat eSi ze = si zeof (data);
rv = C_Decrypt Updat e(

hSessi on,

&encrypt edDat a[BUF_Sz* 2], 8,

data, &ul Last Updat eSi ze);

/* Get last little piece of plaintext. Should have
| ength O */

ul Dat aLen = si zeof (dat a) - ul Last Updat eSi ze;

rv = C_DecryptFinal (hSessi on, &data[ul Last Updat eSi ze],
&ul Dat aLen) ;

if (rv 1= CKR.OK) {

}

/* Send last bit of plaintext to verification operation
*/

rv = C VerifyUpdat e(hSessi on, &data[BUF_SZ*2], 5);

if (rv = CKR.K) {

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 198

}
rv = C VerifyFinal (hSession, MAC, ul MaclLen);
if (rv == CKR_SI GNATURE | NVALI D) {

}

11.14 Key management functions

Cryptoki provides the following functions for key management:

¢ C GenerateKey

CK_DEFI NE_FUNCTI ON(CK_RV, C Cener at eKey) (
CK_SESSI ON_HANDLE hSessi on
CK_MECHANI SM PTR pMechani sm
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_OBJECT_HANDLE_PTR phKey
);

C_GenerateKey generates a secret key, creating a new key object. hSession is the
session’s handlggMechanism points to the key generation mechanigifemplate points

to the template for the new keytCount is the number of attributes in the template;
phKey points to the location that receives the handle of the new key.

Since the type of key to be generated is implicit in the key generation mechanism, the
template does not need to supply a key type. If it does supply a key type which is
inconsistent with the key generation mechani€nGenerateKey fails and returns the

error code CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS attribute is treated
similarly.

If a call toC_GenerateKey cannot support the precise template supplied to it, it will falil
and return without creating any key object.

The key object created by a successful call GoGenerateKey will have its
CKA_LOCAL attribute set to TRUE.

Return values: CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID,

Copyright © 1994-1999 RSA Laboratories

Page 199

CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ ONLY, CKR_ TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER _NOT_LOGGED_IN, CKR_ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_MECHANI SM nechani sm = {
CKM_DES_KEY_GEN, NULL_PTR, O

}
CK_ RV rv;

'rv = C_Cener at eKey(hSessi on, &nmechanism NULL_PTR, O,
&hKey) ;
if (rv == CKR_.OK) {

}

¢ C_GenerateKeyPair

CK_DEFI NE_FUNCTI ON(CK_RV, C_Cener at eKeyPai r) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_ATTRI BUTE_PTR pPubl i cKeyTenpl at e,
CK_ULONG ul Publ i cKeyAttri but eCount,
CK_ATTRI BUTE_PTR pPri vat eKeyTenpl at e,
CK_ULONG ul Privat eKeyAttri but eCount,
CK_OBJECT_HANDLE_PTR phPubl i cKey,
CK_OBJECT_HANDLE_PTR phPri vat eKey

) ;

C_GenerateKeyPair generates a public/private key pair, creating new key objects.
hSession is the session’s handlpMechanism points to the key generation mechanism;
pPublicKkeyTemplate points to the template for the public key;
ulPublicKeyAttributeCount is the number of attributes in the public-key template;
pPrivateKeyTemplate points to the template for the private key;
ulPrivateKeyAttributeCount is the number of attributes in the private-key template;
phPublickey points to the location that receives the handle of the new public key;
phPrivateKey points to the location that receives the handle of the new private key.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 200

Since the types of keysto be generated are implicit in the key pair generation mechanism,
the templates do not need to supply key types. If one of the templates does supply a key
type which is inconsistent with the key generation mechanism, C_GenerateKeyPair fails
and returns the error code CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS
attribute is treated similarly.

If acal to C_GenerateKeyPair cannot support the precise templates supplied to it, it
will fail and return without creating any key objects.

A call to C_GenerateKeyPair will never create just one key and return. A call can fail,
and create no keys, or it can succeed, and create a matching public/private key pair.

The key objects created by a successful cal to C_GenerateKeyPair will have ther
CKA_LOCAL attributes set to TRUE.

Note carefully the order of the arguments to C_GenerateKeyPair. The last two
arguments do not have the same order as they did in the original Cryptoki Version 1.0
document. The order of these two arguments has caused some unfortunate confusion.

Return values; CKR_ATTRIBUTE_READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI|_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ ONLY, CKR_ TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER _NOT_LOGGED_IN, CKR_ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hPubl i cKey, hPrivat eKey;

CK_MECHANI SM nechani sm = {
CKM_RSA PKCS _KEY_PAI R _GEN, NULL_PTR, O

CK_ULONG nodul usBits = 768;
CK_BYTE publ i cExponent[] = { 3 };
CK_BYTE subject[] ={...};

CK_BYTE id[] = {123};

CK _BBOOL true = TRUE;

CK_ATTRI BUTE publ i cKeyTenpl ate[] = {
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA VERI FY, &true, sizeof(true)},
{CKA WRAP, &true, sizeof(true)},
{CKA_MODULUS BI TS, &nmodul usBits, sizeof(nodulusBits)},

Copyright © 1994-1999 RSA Laboratories

Page 201

{ CKA_PUBLI C_EXPONENT, publicExponent, sizeof
(publ i cExponent)}

CK_ATTRI BUTE privat eKeyTenplate[] = {
{CKA _TOKEN, &true, sizeof(true)},
{CKA PRI VATE, &true, sizeof(true)},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA_SENSI Tl VE, &true, sizeof(true)},
{ CKA_DECRYPT, &true, sizeof(true)},
{CKA SIGN, &true, sizeof(true)},
{CKA _UNVRAP, &true, sizeof(true)}

1

CK_ RV rv;

rv = C_Gener at eKeyPai r (
hSessi on, &mechani sm
publ i cKeyTenpl ate, 5,
privat eKeyTenpl ate, 8,
&Publ i cKey, &hPrivateKey);
if (rv == CKR_.OX) {

}
¢ C_WrapKey

CK_DEFI NE_FUNCTI ON(CK_RV, C_W apKey) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hW appi ngKey,
CK_OBJECT_HANDLE hKey,

CK_BYTE_PTR pW appedKey,
CK_ULONG_PTR pul W appedKeyLen

) ;

C_WrapKey wraps (i.e., encrypts) a private or secret key. hSession is the session’s
handle;pMechanism points to the wrapping mechanishV\kappingKey is the handle of
the wrapping keyhKey is the handle of the key to be wrapppdfappedKey points to
the location that receives the wrapped key; it appedKeyLen points to the location
that receives the length of the wrapped key.

C_WrapKey uses the convention described in Section 11.2 on producing output.

The CKA_WRAP attribute of the wrapping key, which indicates whether the key
supports wrapping, must be TRUE. TBKA_EXTRACTABLE attribute of the key to
be wrapped must also be TRUE.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 202

If the key to be wrapped cannot be wrapped for some token-specific reason, despite its
having its CKA_EXTRACTABLE attribute set to TRUE, then C_WrapKey fails with
error code CKR_KEY_NOT_WRAPPABLE. If it cannot be wrapped with the specified
wrapping key and mechanism solely because of its length, then C_WrapKey fails with
error code CKR_KEY_SIZE_RANGE.

C_WrapKey can be used in the following situations:
* Towrap any secret key with an RSA public key.

* To wrap any secret key with any other secret key other than a SKIPJACK, BATON,
or JUNIPER key.

* TowrapaSKIPJACK, BATON, or JUNIPER key with another SKIPJACK, BATON,
or JUNIPER key (the two keys need not be the same type of key).

* Towrap an RSA, Diffie-Hellman, or DSA private key with any secret key other than
a SKIPJACK, BATON, or JUNIPER key.

* Towrap aKEA or DSA private key with a SKIPJACK key.

Of course, tokens vary in which types of keys can actually be wrapped with which
mechanisms.

Return Values: CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_HANDLE_INVALID, CKR_KEY_NOT_WRAPPABLE,
CKR_KEY_SIZE_RANGE, CKR_KEY_UNEXTRACTABLE,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_WRAPPING_KEY_HANDLE_INVALID,
CKR_WRAPPING_KEY_SIZE_RANGE,
CKR_WRAPPING_KEY_TYPE_INCONSISTENT, CKR_ ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hW appi ngKey, hKey;
CK_MECHANI SM mechani sm = {

CKM DES3_ECB, NULL_PTR, 0
¥
CK_BYTE w appedKey|[8] ;
CK_ULONG ul W appedKeyLen;

Copyright © 1994-1999 RSA Laboratories

Page 203

CK RV rv;

ul W appedKeyLen = si zeof (w appedKey) ;
rv = C_WapKey(

hSessi on, &mrechani sm

hW appi ngKey, hKey,

wr appedKey, &ul W appedKeylLen);
if (rv == CKR_.OX) {

}
¢ C_UnwrapKey

CK_DEFI NE_FUNCTI ON(CK_RV, C_Unwr apKey) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hUnwr appi ngKey,
CK_BYTE_PTR pW appedKey,
CK_ULONG ul W appedKeyLen,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Attri but eCount,
CK_OBJECT_HANDLE_PTR phKey

);

C_UnwrapKey unwraps (i.e. decrypts) a wrapped key, creating a new private key or
secret key object. hSession is the session’s handlpMechanism points to the unwrapping
mechanismhUnwrappingKey is the handle of the unwrapping key\rappedKey points
to the wrapped keyulWrappedKeyLen is the length of the wrapped kepTemplate
points to the template for the new kelAttributeCount is the number of attributes in the
templatephKey points to the location that receives the handle of the recovered key.

The CKA_UNWRAP attribute of the unwrapping key, which indicates whether the key
supports unwrapping, must be TRUE.

The new key will have th€KA_ALWAYS SENSITIVE attribute set to FALSE, and
the CKA_EXTRACTABLE attribute set to TRUE.

When C_UnwrapKey s used to unwrap a key with the
CKM_KEY_WRAP_SET_OAEP mechanism (see Section 12.32.1), additional “extra
data” is decrypted at the same time that the key is unwrapped. The return of this data
follows the convention in Section 11.2 on producing output. If the extra data is not
returned from a call t€ UnwrapKey (either because the call was only to find out how
large the extra data is, or because the buffer provided for the extra data was too small),
thenC_UnwrapKey will not create a new key, either.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 204

If acal to C_UnwrapKey cannot support the precise template supplied to it, it will fail
and return without creating any key object.

The key object created by a successful cal to C_UnwrapKey will have its
CKA_LOCAL attribute set to FALSE.

Return values; CKR_ATTRIBUTE_READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_BUFFER _TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ ONLY, CKR_ TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_UNWRAPPING_KEY HANDLE_INVALID,
CKR_UNWRAPPING_KEY_SIZE_RANGE,
CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT,
CKR_USER_NOT_LOGGED_IN, CKR_WRAPPED KEY_INVALID,
CKR_WRAPPED KEY_LEN_RANGE, CKR_ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hUnwr appi ngKey, hKey;
CK_MECHANI SM nechani sm = {

CKM DES3_ECB, NULL_PTR, O

1
CK_BYTE w appedKey[8] = {...};
CK_OBJECT_CLASS keyd ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &keyd ass, sizeof(keyd ass)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{ CKA_ENCRYPT, &true, sizeof(true)},

{ CKA_DECRYPT, &true, sizeof(true)}

};
CK_ RV rv;

rv = C_Unw apKey(

hSessi on, &nmechani sm hUnw appi ngKey,

wr appedKey, sizeof (w appedKey), tenplate, 4, &hKey);
if (rv == CKR_K) {

Copyright © 1994-1999 RSA Laboratories

Page 205

}

¢ C DeriveKey

CK_DEFI NE_FUNCTI ON(CK_RV, C DeriveKey) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hBaseKey,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Attri but eCount,
CK_OBJECT_HANDLE PTR phKey

);

C_DeriveK ey derives a key from a base key, creating a new key object. hSession is the
session’s handlepMechanism points to a structure that specifies the key derivation
mechanism;hBaseKey is the handle of the base kg@fiemplate points to the template for
the new key;ulAttributeCount is the number of attributes in the template; phey
points to the location that receives the handle of the derived key.

The values of the CK_SENSITIVE, CK_ALWAYS SENSITIVE,
CK_EXTRACTABLE, andCK_NEVER_EXTRACTABLE attributes for the base key
affect the values that these attributes can hold for the newly-derived key. See the
description of each particular key-derivation mechanism in Section 11.17.2 for any
constraints of this type.

If a call toC_DeriveKey cannot support the precise template supplied to it, it will falil
and return without creating any key object.

The key object created by a successful call tDeriveKey will have itsCKA_LOCAL
attribute set to FALSE.

Return values: CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE,
CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN, CKR_ARGUMENTS_BAD.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 206

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hPubl i cKey, hPrivat eKey, hKey;
CK_MECHANI SM keyPai r Mechani sm = {
CKM DH_PKCS_KEY_PAI R_GEN, NULL_PTR, O
1
CK BYTE prinme[] ={...};
CK_BYTE base[] = {...};
CK_BYTE publicVval ue[128];
CK_BYTE ot her Publ i cVal ue[128] ;
CK_MECHANI SM mechani sm = {
CKM_DH PKCS_DERI VE, ot her Publi cVal ue,
si zeof (ot her Publ i cVal ue)

CK_ATTRI BUTE pTenplate[] = {
CKA VALUE, &publicVal ue, sizeof (publicVal ue)}
¥
CK_OBJECT_CLASS keyd ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK BBOOL true = TRUE;
CK_ATTRI BUTE publ i cKeyTenpl ate[] = {

{CKA PRI VE, prine, sizeof(prine)},

{CKA BASE, base, sizeof(base)}

Ci(_ATTRI BUTE privateKeyTenpl ate[] = {
{CKA DERI VE, &true, sizeof(true)}

CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &keyd ass, sizeof (keyd ass)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{ CKA_ENCRYPT, &true, sizeof(true)},
{ CKA_DECRYPT, &true, sizeof(true)}

}
CK RV rv;

rv = C _Gener at eKeyPai r (
hSessi on, &keyPair Mechani sm
publ i cKeyTenpl ate, 2,
privat eKeyTenpl ate, 1,
&Publ i cKey, &hPrivat eKey);
if (rv == CKR_OK)
rv = C Get Attri buteVal ue(hSessi on, hPubli cKey,
&Tenpl ate, 1);
if (rv == CKR_K) {
[* Put other guy’s public value in otherPublicvalue
*/

Copyright © 1994-1999 RSA Laboratories

Page 207

rv = C DeriveKey(
hSessi on, &mechani sm
hPri vat eKey, tenplate, 4, &hKey);
if (rv == CKR_.OX) {

}
}
}

11.15 Random number generation functions

Cryptoki provides the following functions for generating random numbers:

¢ C_SeedRandom

CK_DEFI NE_FUNCTI ON(CK_RV, C_SeedRandom (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSeed,

CK_ULONG ul SeedLen

) ;

C_SeedRandom mixes additional seed material into the token’s random number
generator.hSession is the session’s handlggSeed points to the seed material; and
ulSeedLen is the length in bytes of the seed material.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_RANDOM_SEED_NOT_SUPPORTED,
CKR_RANDOM_NO_RNG, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN, |
CKR_ARGUMENTS_BAD.

Example: se€_GenerateRandom.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 208

¢ C_GenerateRandom

CK_DEFI NE_FUNCTI ON(CK_RV, C CGener at eRandom (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pRandonDat a,
CK_ULONG ul Randonien

)E

C_GenerateRandom generates random or pseudo-random data. hSession is the session’s
handle; pRandomData points to the location that receives the random data; and
ulRandomLen is the length in bytes of the random or pseudo-random data to be generated.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_RANDOM_NO_RNG,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN, CKR_ARGUMENTS_BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_BYTE seed[] = {...};
CK_BYTE randonData[] ={...}
CK_ RV rv;

'rv = C_SeedRandon(hSessi on, seed, sizeof (seed));
if (rv = CKR.K) {

}
rv = C_Gener at eRandon{ hSessi on, randonDat a,

si zeof (randonDat a)) ;
if (rv == CKR.OK) {

}

11.16 Parallel function management functions

Cryptoki provides the following functions for managing parallel execution of
cryptographic functions. These functions exist only for backwards compatibility.

Copyright © 1994-1999 RSA Laboratories

Page 209

¢ C_GetFunctionStatus

CK_DEFI NE_FUNCTI ON(CK_RV, C CGet Functi onSt at us) (
CK_SESSI ON_HANDLE hSessi on

) ;

In previous versions of Cryptoki, C_GetFunctionStatus obtained the status of a function
running in paralel with an application. Now, however, C_GetFunctionStatus is a
legacy function which should simply return the value
CKR_FUNCTION_NOT_PARALLEL.

Returnvalues: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_CLOSED.

¢ C_CancedFunction

CK_DEFI NE_FUNCTI ON(CK_RV, C _Cancel Functi on) (
CK_SESSI ON_HANDLE hSessi on

) ;

In previous versions of Cryptoki, C_CancelFunction cancelled a function running in
paralel with an application. Now, however, C_CancelFunction is a legacy function
which should ssmply return the value CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_CLOSED.

11.17 Callback functions

Cryptoki sessions can use function pointers of type CK_NOTIFY to notify the
application of certain events.

11.17.1 Surrender callbacks

Cryptographic functions (i.e., any functions falling under one of these categories:
encryption functions; decryption functions, message digesting functions; signing and
MACing functions; functions for verifying signatures and MACSs, dua-purpose
cryptographic functions; key management functions, random number generation
functions) executing in Cryptoki sessions can periodically surrender control to the
application who caled them if the session they are executing in had a notification
callback function associated with it when it was opened. They do this by calling the
session’s callback with the argument$hSessi on, CKN_SURRENDER,

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 210

pAppl i cati on),wherehSessi on is the session’s handle ap@ppl i cati on was
supplied toC_OpenSession when the session was opened. Surrender callbacks should
return either the value CKR_OK (to indicate that Cryptoki should continue executing the
function) or the value CKR_CANCEL (to indicate that Cryptoki should abort execution
of the function). Of course, before returning one of these values, the callback function
can perform some computation, if desired.

A typical use of a surrender callback might be to give an application user feedback during
a lengthy key pair generation operation. Each time the application receives a callback, it
could display an additional “.” to the user. It might also examine the keyboard’s activity
since the last surrender callback, and abort the key pair generation operation (probably by
returning the value CKR_CANCEL) if the user hit <ESCAPE>.

A Cryptoki library is notrequired to makeany surrender callbacks.

11.17.2 Vendor-defined callbacks

Library vendors can also define additional types of callbacks. Because of this extension
capability, application-supplied notification callback routines should examine each
callback they receive, and if they are unfamiliar with the type of that callback, they should
immediately give control back to the library by returning with the value CKR_OK.

12. Mechanisms
A mechanism specifies precisely how a certain cryptographic process is to be performed.

The following table shows which Cryptoki mechanisms are supported by different
cryptographic operations. For any particular token, of course, a particular operation may
well support only a subset of the mechanisms listed. There is also no guarantee that a
token which supports one mechanism for some operation supports any other mechanism
for any other operation (or even supports that same mechanism for any other operation).
For example, even if a token is able to create RSA digital signatures with the
CKM_RSA PKCS mechanism, it may or may not be the case that the same token can
also perform RSA encryption wittKM_RSA PKCS.

Copyright © 1994-1999 RSA Laboratories

Page 211

Table 555548, M echanismsvs. Functions

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap
Pair
CKM_RSA_PKCS KEY_PAIR_GEN v
CKM_RSA_PKCS v? v? v v
CKM_RSA_9796 v? v
CKM_RSA_X_509 V2 V2 v v
CKM_MD2_RSA_PKCS
CKM_MD5_RSA_PKCS
CKM_SHAL RSA_PKCS
CKM_RIPEMD128 RSA_PKCS
CKM_RIPEMD160 RSA_PKCS
CKM_DSA_KEY_PAIR_GEN v
CKM_DSA
CKM_DSA_SHA1
CKM_FORTEZZA_TIMESTAMP
CKM_ECDSA_KEY_PAIR_GEN v
CKM_ECDSA v?
CKM_ECDSA_SHA1 v
CKM_DH_PKCS KEY_PAIR_GEN v
CKM_DH_PKCS _DERIVE v
CKM_KEA_KEY_PAIR_GEN v
CKM_KEA_KEY_DERIVE v
CKM_GENERIC_SECRET_KEY_GEN v
CKM_RC2_KEY_GEN v
CKM_RC2_ECB v v
CKM_RC2_CBC v v
CKM_RC2_CBC_PAD v v

ANIANIRENERN RN

N

<

N

CKM_RC2_MAC_GENERAL v

CKM_RC2 MAC v

CKM_RC4 KEY_GEN v

CKM_RC4 v

CKM_RC5_KEY_GEN v

CKM_RC5_ECB v v

CKM_RC5_CBC v v

CKM_RC5_CBC_PAD v v

CKM_RC5_MAC_GENERAL v

CKM_RC5 MAC v

CKM_DES_KEY_GEN v

CKM_DES_ECB v v

CKM_DES CBC v v

CKM_DES_CBC_PAD v v

CKM_DES_MAC_GENERAL v

CKM_DES MAC v

CKM_DES2_KEY_GEN v

CKM_DES3_KEY_GEN v

CKM_DES3_ECB v v

CKM_DES3_CBC v v

CKM_DES3_CBC_PAD v v

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

212

M echanism

Functions

Encrypt
&
Decrypt

Sign

Verify

Qo

VR!

Digest

Key/
Key
Pair

Wrap

Unwrap

Derive

CKM_DES3_MAC_GENERAL

CKM_DES3_MAC

CKM_CAST_KEY_GEN

CKM_CAST_ECB

CKM_CAST_CBC

CKM_CAST_CBC_PAD

CKM_CAST_MAC_GENERAL

CKM_CAST_MAC

CKM_CAST3_KEY_GEN

CKM_CAST3_ECB

CKM_CAST3_CBC

CKM_CAST3_CBC_PAD

CKM_CAST3_MAC_GENERAL

CKM_CAST3_MAC

CKM_CAST128 KEY_GEN
(CKM_CAST5_KEY_GEN)

CKM_CAST128_ECB (CKM_CAST5_ECB)

CKM_CAST128_CBC (CKM_CAST5_CBC)

CKM_CAST128_CBC_PAD
(CKM_CAST5_CBC_PAD)

CKM_CAST128_ MAC_GENERAL
(CKM_CAST5 MAC_GENERAL)

CKM_CAST128_ MAC (CKM_CAST5_MAC)

CKM_IDEA_KEY_GEN

CKM_IDEA_ECB

CKM_IDEA_CBC

CKM_IDEA_CBC_PAD

CKM_IDEA_MAC_GENERAL

CKM_IDEA_MAC

CKM_CDMF_KEY_GEN

CKM_CDMF_ECB

CKM_CDMF_CBC

CKM_CDMF_CBC_PAD

CKM_CDMF_MAC_GENERAL

CKM_CDMF_MAC

CKM_SKIPJACK_KEY_GEN

CKM_SKIPJACK_ECB64

CKM_SKIPJACK_CBC64

CKM_SKIPJACK_OFB64

CKM_SKIPJACK_CFB64

CKM_SKIPJACK_CFB32

CKM_SKIPJACK_CFB16

CKM_SKIPJACK_CFBS

ANINENENENENEN

CKM_SKIPJACK_WRAP

CKM_SKIPJACK_PRIVATE_WRAP

CKM_SKIPJACK_RELAYX

CKM_BATON_KEY_GEN

CKM_BATON_ECB128

Copyright © 1994-1999 RSA Laboratories

Page 213

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap
Pair

CKM_BATON_ECB96

CKM_BATON_CBC128

CKM_BATON_COUNTER

ANIENIENEEN

CKM_BATON_SHUFFLE

CKM_BATON_WRAP v

CKM_JUNIPER_KEY_GEN v

CKM_JUNIPER_ECB128

CKM_JUNIPER_CBC128

CKM_JUNIPER_COUNTER

ANNIENIENEEN

CKM_JUNIPER_SHUFFLE

CKM_JUNIPER_WRAP v

CKM_MD2 v

CKM_MD2_HMAC_GENERAL v

CKM_MD2_HMAC v

CKM_MD2_KEY_DERIVATION v

CKM_MD5 v

CKM_MD5_HMAC_GENERAL v

CKM_MD5_HMAC v

CKM_MD5_KEY_DERIVATION v

CKM_SHA 1 v

CKM_SHA_1 HMAC_GENERAL v

<

CKM_SHA_1 HMAC

CKM_SHA1 KEY_DERIVATION v

AN

CKM_RIPEMD128

CKM_RIPEMD128 HMAC_GENERAL

ANIAN

CKM_RIPEMD128 HMAC

CKM_RIPEMD160

AN

CKM_RIPEMD160 HMAC_GENERAL

ANIAN

CKM_RIPEMD160 HMAC

CKM_FASTHASH v

CKM_PBE_MD2_DES CBC

CKM_PBE_MD5_DES CBC

CKM_PBE_MD5_CAST_CBC

CKM_PBE_MD5_CAST3_CBC

ANIENIENIENIEN

CKM_PBE_MD5_CAST128 CBC
(CKM_PBE_MD5_CAST5_CBC)

<

CKM_PBE_SHA1_CAST128_CBC
(CKM_PBE_SHA1_CAST5 CBC)

CKM_PBE_SHAL_RC4 128

CKM_PBE_SHAZL_RC4 40

CKM_PBE_SHA1_DES3_EDE_CBC

CKM_PBE_SHA1_DES2_EDE_CBC

CKM_PBE_SHAZL_RC2 128 CBC

CKM_PBE_SHAZL_RC2 40 CBC

ANNENENENENENEN

CKM_PBA_SHAL WITH_SHAL HMAC

CKM_KEY_WRAP_SET_OAEP v

CKM_KEY_WRAP_LYNKS v

CKM_SSL3 PRE_MASTER KEY_GEN v

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 214

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_SSL3_MASTER_KEY_DERIVE v
CKM_SSL3 KEY_AND_MAC_DERIVE v
CKM_SSL3_MD5_MAC v
CKM_SSL3 _SHAL1 MAC v

CKM_CONCATENATE_BASE_AND_KEY
CKM_CONCATENATE_BASE_AND_DATA
CKM_CONCATENATE_DATA_AND_BASE
CKM_XOR_BASE_AND_DATA
CKM_EXTRACT_KEY_FROM_KEY

! SR = SignRecover, VR = VerifyRecover.

SNIEVINENEN

2 Single-part operations only.
* Mechanism can only be used for wrapping, not unwrapping.

The remainder of Section 11.17.2 will present in detail the mechanisms supported by
Cryptoki Version 2:612.1 and the parameters which are supplied to them.

In general, if a mechanism makes no mention of the ulMinKeyLen and ulMaxKeyLen
fields of the CK_MECHANISM_INFO structure, then those fields have no meaning for
that particular mechanism.

12.1 RSA mechanisms

1211 PKCS#1 RSA key pair generation

The PKCS #1 RSA key par generation mechanism, denoted
CKM_RSA PKCS KEY_PAIR_GEN, is a key pair generation mechanism based on
the RSA public-key cryptosystem, as defined in PKCS #1.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length
in bits and public exponent, as specified in the CKA_MODULUS BITS and
CKA_PUBLIC_EXPONENT attributes of the template for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_MODULUS,
and CKA_PUBLIC_EXPONENT attributes to the new public key. It contributes the
CKA_CLASS and CKA_KEY_TYPE attributes to the new private key; it may aso
contribute some of the following attributes to the new private key: CKA_MODULUS,
CKA _PUBLIC_ EXPONENT, CKA_PRIVATE _EXPONENT, CKA PRIME 1,
CKA_PRIME_2, CKA_EXPONENT 1, CKA_EXPONENT _2,

Copyright © 1994-1999 RSA Laboratories

Page 215

CKA_COEFFICIENT (see Section 10.9.110.9.116.71). Other attributes supported by
the RSA public and private key types (specificaly, the flags indicating which functions
the keys support) may also be specified in the templates for the keys, or else are assigned
default initial values.

Keys generated with this mechanism can be used with the following mechanisms. PKCS
#1 RSA; ISO/IEC 9796 RSA; X.509 (raw) RSA; PKCS #1 RSA with MD2; PKCS #1
RSA with MD5; PKCS #1 RSA with SHA-1; and OAEP key wrapping for SET.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

121.2 PKCS#1 RSA

The PKCS #1 RSA mechanism, denoted CKM_RSA PKCS, is a multi-purpose
mechanism based on the RSA public-key cryptosystem and the block formats defined in
PKCS #1. It supports single-part encryption and decryption; single-part signatures and
verification with and without message recovery; key wrapping; and key unwrapping.
This mechanism corresponds only to the part of PKCS #1 that involves RSA; it does not
compute a message digest or a Digestinfo encoding as specified for the
md2wi t hRSAEncr ypt i on and nd5w t hRSAEncr ypt i on algorithmsin PKCS #1.

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that

it supports. For wrapping, the “input” to the encryption operation is the value of the
CKA_VALUE attribute of the key that is wrapped; similarly for unwrapping. The
mechanism does not wrap the key type or any other information about the key, except the
key length; the application must convey these separately. In particular, the mechanism

contributes only th€ KA _CLASS andCKA_VALUE (andCKA_VALUE_LEN, if the

key has it) attributes to the recovered key during unwrapping; other attributes must be

specified in the template.

Constraints on key types and the length of the data are summarized in the following table.
For encryption, decryption, signatures and signature verification, the input and output

data may begin at the same location in memory. In the taldethe length in bytes of
the RSA modulus.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 216

Table 565649, PK CS#1 RSA: Key And Data Length

Function Key type Input Output Comments
length length
C_Encrypt’ RSA publickey | <k-11 k block type 02
C_Decrypt! RSA private key k <k-11 block type 02
C_Sign' RSA privatekey | <k-11 k block type 01
C_SignRecover RSA private key <k-11 k block type 01
C_Verify* RSA publickey | <k-11, K N/A block type 01
C VerifyRecover | RSA public key k <k-11 block type 01
C_WrapKey RSA public key <k11 k block type 02
C_UnwrapKey RSA private key k <k-11 block type 02

! Single-part operations only.
2 Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

1213 | SO/IEC 9796 RSA

The ISO/IEC 9796 RSA mechanism, denoted CKM_RSA 9796, is a mechanism for
single-part signatures and verification with and without message recovery based on the
RSA public-key cryptosystem and the block formats defined in ISO/IEC 9796 and its
annex A. This mechanism is compatible with the draft ANSI X9.31 (assuming the length
in bits of the X9.31 hash value is a multiple of 8).

This mechanism processes only byte strings, whereas ISO/IEC 9796 operates on bit
strings. Accordingly, the following transformations are performed:

» Data is converted between byte and bit string formats by interpreting the most-
significant bit of the leading byte of the byte string as the leftmost bit of the bit string,
and the least-significant bit of the trailing byte of the byte string as the rightmost bit of
the bit string (this assumes the length in bits of the datais a multiple of 8).

» A signature is converted from a bit string to a byte string by padding the bit string on
the left with 0 to 7 zero bits so that the resulting length in bits is a multiple of 8, and
converting the resulting bit string as above; it is converted from a byte string to a bit
string by converting the byte string as above, and removing bits from the left so that
the resulting length in bitsis the same as that of the RSA modulus.

This mechanism does not have a parameter.

Copyright © 1994-1999 RSA Laboratories

Page 217

Constraints on key types and the length of input and output data are summarized in the
following table. Inthetable, kisthe length in bytes of the RSA modulus.

Table 575750, | SO/IEC 9796 RSA: Key And Data L ength

Function Key type Input Output
length length
C_Sign* RSA privatekey | < k20 k
C_SignRecover RSA private key < k20 k
C_Verify* RSA publickey | < k20K N/A
C VerifyRecover | RSA public key k < K20

! Single-part operations only.
2 Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

12.1.4 X.509 (raw) RSA

The X.509 (raw) RSA mechanism, denoted CKM_RSA X 509, is a multi-purpose
mechanism based on the RSA public-key cryptosystem. It supports single-part encryption
and decryption; single-part signatures and verification with and without message
recovery; key wrapping; and key unwrapping. All these operations are based on so-called
“raw” RSA, as assumed in X.509.

“Raw” RSA as defined here encrypts a byte string by converting it to an integer, most-
significant byte first, applying “raw” RSA exponentiation, and converting the result to a
byte string, most-significant byte first. The input string, considered as an integer, must be
less than the modulus; the output string is also less than the modulus.

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that
it supports. For wrapping, the “input” to the encryption operation is the value of the
CKA_VALUE attribute of the key that is wrapped; similarly for unwrapping. The
mechanism does not wrap the key type, key length, or any other information about the
key; the application must convey these separately, and supply them when unwrapping the
key.

Unfortunately, X.509 does not specify how to perform padding for RSA encryption. For
this mechanism, padding should be performed by prepending plaintext data with 0-valued

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 218

bytes. In effect, to encrypt the sequence of plaintext bytes by b, ... b, (n < k), Cryptoki

forms P=2"b,;+2"%b,+...+h,. This number must be less than the RSA modulus. kThe

byte ciphertextK is the length in bytes of the RSA modulus) is produced by raising P to
the RSA public exponent modulo the RSA modulus. Decryptionkdsyde ciphertext C

is accomplished by raising C to the RSA private exponent modulo the RSA modulus, and
returning the resulting value as a sequence of exattjges. If the resulting plaintext is

to be used to produce an unwrapped key, then however many bytes are specified in the
template for the length of the key are takem the end of this sequence of bytes.

Technically, the above procedures may differ very slightly from certain details of what is
specified in X.509.

Executing cryptographic operations using this mechanism can result in the error returns
CKR_DATA_INVALID (if plaintext is supplied which has the same length as the RSA
modulus and is numerically at least as large as the modulus) and
CKR_ENCRYPTED_DATA_INVALID (if ciphertext is supplied which has the same
length as the RSA modulus and is numerically at least as large as the modulus).

Constraints on key types and the length of input and output data are summarized in the
following table. In the tablé is the length in bytes of the RSA modulus.

Table 585851, X.509 (Raw) RSA: Key And Data L ength

Function Key type I nput Output length
length

C_Encrypt RSA publickey | <k k

C_Decrypt RSA private key| k k

C_Sigrt RSA private key| <k k

C_SignRecover RSA private key <k Kk

C_Verify" RSA public key | <k, K N/A

C_VerifyRecover| RSA public key k Kk

C_WrapKey RSA publickey| <k k

C_UnwrapKey RSA private key k < k (specified in template

! Single-part operations only.
2 Data length, signature length.

For this mechanism, theulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

This mechanism is intended for compatibility with applications that do not follow the
PKCS #1 or ISO/IEC 9796 block formats.

Copyright © 1994-1999 RSA Laboratories

Page 219

12.1.5 PKCS#1 RSA signaturewith MD2, MD5, or SHA-1

The PKCS #1 RSA signature with MD2 mechanism, denoted CKM_MD2_RSA_PKCS,
performs single- and multiple-part digital signatures and verification operations without
message recovery. The operations performed are as described in PKCS #1 with the
object identifier md2WithRSAEncryption.

Similarly, the PKCS #1 RSA signature with MD5 mechanism, denoted
CKM_MD5 RSA PKCS, performs the same operations described in PKCS #1 with the
object identifier mdSWithRSAEncryption. The PKCS #1 RSA signature with SHA-1
mechanism, denoted CKM_SHA1 RSA_PKCS, performs the same operations, except
that it uses the hash function SHA-1, instead of MD2 or MD5.

None of these mechanisms has a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized
in the following table. In the table, k is the length in bytes of the RSA modulus. For the
PKCS#1 RSA signature with MD2 and PKCS #1 RSA signature with MD5 mechanisms,
k must be at least 27; for the PKCS #1 RSA signature with SHA-1 mechanism, k must be
at least 31.

Table 595952, PKCS #1 RSA Signatureswith MD2, MD5, or SHA-1: Key And Data
Length

Function Key type Input Output Comments
length length
C_Sign RSA private key any k block type
01
C_Verify RSA public key any, k° N/A block type
01

Z Datalength, signature length.

For these mechanisms, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

12.2 DSA mechanisms

12.2.1 DSA key pair generation

The DSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN, isa
key pair generation mechanism based on the Digital Signature Algorithm defined in FIPS
PUB 186.

This mechanism does not have a parameter.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 220

The mechanism generates DSA public/private key pairs with a particular prime, subprime
and base, as specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE
attributes of the template for the public key. Note that this version of Cryptoki does not
include a mechanism for generating these DSA parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE,
CKA_PRIME, CKA_SUBPRIME, CKA BASE, and CKA_VALUE attributes to the
new private key. Other attributes supported by the DSA public and private key types
(specifically, the flags indicating which functions the keys support) may also be specified
in the templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM_INFO structure specify the supported range of DSA prime sizes, in
bits.

1222 DSA without hashing

The DSA without hashing mechanism, denoted CKM_DSA, is a mechanism for single-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS
PUB 186. (This mechanism corresponds only to the part of DSA that processes the 20-
byte hash value; it does not compute the hash value.)

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to
the concatenation of the DSA valuesr and s, each represented most-significant byte first.

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 606053, DSA: Key And Data Length

Function Key type I nput Output
length length

C _Sign DSA private key 20 40

C_Verify* DSA public key 20, 40° N/A

! Single-part operations only.
2 Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of DSA prime sizes, in
bits.

Copyright © 1994-1999 RSA Laboratories

Page 221

1223 DSA with SHA-1

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA1, is a mechanism for
single- and multiple-part signatures and verification based on the Digital Signature
Algorithm defined in FIPS PUB 186. This mechanism computes the entire DSA
specification, including the hashing with SHA-1.

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to
the concatenation of the DSA valuesr and s, each represented most-significant byte first.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 616154, DSA with SHA-1: Key And Data Length

Function Key type I nput Output
length length

C_Sign DSA private key any 40

C_Verify DSA public key any, 40° N/A

Z Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of DSA prime sizes, in
bits.

12.2.4 FORTEZZA timestamp

The FORTEZZA timestamp mechanism, denoted CKM_FORTEZZA_TIMESTAMP,
isamechanism for single-part signatures and verification. The signatures it produces and
verifies are DSA digital signatures over the provided hash value and the current time.

It has no parameters.

Constraints on key types and the length of data are summarized in the following table.
The input and output data may begin at the same location in memory.

Table 626255, FORTEZZA Timestamp: Key And Data Length

Function Key type I nput Output
length length

C_Sign' DSA private key 20 40

C_Verify* DSA public key 20, 40° N/A

! Single-part operations only.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 222

? Data length, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM_INFO structure specify the supported range of DSA prime sizes, in
bits.

12.3 About ECDSA

The ECDSA (Elliptic Curve Digital Signature Algorithm) in this document is the one
described in the ANSI X9.62 working draft specification of November 17, 1997. It is
hoped that the parts of this document that Cryptoki references will not change in the final
ANSI X9.62 document, but there is no guarantee that this will be the case.

In this working draft, there are 3 different varieties of ECDSA defined:
1. ECDSA using afield with an odd prime number of elements.

2. ECDSA using a field of characteristic 2 whose elements are represented using a
polynomial basis.

3. ECDSA using a field of characteristic 2 whose elements are represented using an
optimal normal basis.

An ECDSA key in Cryptoki contains information about which variety of ECDSA it is
suited for. It is preferable that a Cryptoki library which can perform ECDSA mechanisms
be capable of performing operations with all 3 varieties of ECDSA; however, thisis not
required.

If an attempt to create, generate, derive, or unwrap an ECDSA key of an unsupported
variety (or of an unsupported size of a supported variety) is made, that attempt should
fail with the error code CKR_TEMPLATE_INCONSISTENT.

12.4 ECDSA mechanisms

124.1 ECDSA key pair generation

The ECDSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN,
iIsakey pair generation mechanism for ECDSA.

This mechanism does not have a parameter.

The mechanism generates ECDSA public/private key pairs with particular ECDSA
parameters, as specified in the CKA_ECDSA_PARAMS attribute of the template for the
public key. Note that this version of Cryptoki does not include a mechanism for
generating these ECDSA parameters.

Copyright © 1994-1999 RSA Laboratories

Page 223

The mechanism contributes the CKA_CLASS, CKA KEY TYPE, and
CKA_EC_POINT attributes to the new public key and the CKA_CLASS,
CKA_KEY_TYPE, CKA_ECDSA_PARAMS and CKA_CKA_VALUE attributes to
the new private key. Other attributes supported by the ECDSA public and private key
types (specificaly, the flags indicating which functions the keys support) may also be
specified in the templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the minimum and maximum supported
number of bitsin the field sizes, respectively. For example, if a Cryptoki library supports
only ECDSA using a field of characteristic 2 which has between 2°° and 2°® dements,
then ulMinKeySze = 201 and ulMaxKeySze = 301 (when written in binary notation, the
number 2*° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°® is a301-bit number).

1242 ECDSA without hashing

The ECDSA without hashing mechanism, denoted CKM_ECDSA, is a mechanism for
single-part signatures and verification for ECDSA. (This mechanism corresponds only to
the part of ECDSA that processes the 20-byte hash value; it does not compute the hash
value.)

For the purposes of this mechanism, an ECDSA signature is a 40-byte string,
corresponding to the concatenation of the ECDSA values r and s, each represented most-
significant byte first.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 636356, ECDSA: Key And Data L ength

Function Key type Input Output
length length

C_Sign* ECDSA private key 20 40

C_Verify* ECDSA publickey | 20, 40° N/A

! Single-part operations only.
2 Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the minimum and maximum supported
number of bitsin the field sizes, respectively. For example, if a Cryptoki library supports
only ECDSA using a field of characteristic 2 which has between 2°® and 2°® elements
(inclusive), then ulMinKeySize = 201 and ulMaxKeySze = 301 (when written in binary

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 224

notation, the number 2°%° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-
bit number. Similarly, 2°® is a301-bit number).
12.4.3 ECDSA with SHA-1

The ECDSA with SHA-1 mechanism, denoted CKM_ECDSA_SHA1, is a mechanism
for single- and multiple-part signatures and verification for ECDSA. This mechanism
computes the entire ECDSA specification, including the hashing with SHA-1.

For the purposes of this mechanism, an ECDSA signature is a 40-byte string,
corresponding to the concatenation of the ECDSA valuesr and s, each represented most-
significant byte first.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 646457, ECDSA with SHA-1: Key And Data L ength

Function | Key type I nput Output length
length

C_Sign ECDSA private key any 40

C Verify | ECDSA publickey | any, 40° N/A

Z Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the minimum and maximum supported
number of bitsin the field sizes, respectively. For example, if a Cryptoki library supports
only ECDSA using afield of characteristic 2 which has between 22 and 2°% elements,
then ulMinKeySize = 201 and ulMaxKeySze = 301 (when written in binary notation, the
number 2°° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°® is a301-bit number).

125 Diffie-Hdlman mechanisms

1251 PKCS#3 DiffieeHellman key pair generation

The PKCS #3 DiffieHellman key par generation mechanism, denoted
CKM_DH_PKCS KEY_PAIR_GEN, is a key pair generation mechanism based on
Diffie-Hellman key agreement, as defined in PKCS #3. This is what PKCS #3 cals
“phase I".

It does not have a parameter.

Copyright © 1994-1999 RSA Laboratories

Page 225

The mechanism generates Diffie-Hellman public/private key pairs with a particular prime
and base, as specified in the CKA_PRIME and CKA_BASE attributes of the template
for the public key. If the CKA_VALUE_BITS attribute of the private key is specified,
the mechanism limits the length in bits of the private value, as described in PKCS #3.
Note that this version of Cryptoki does not include a mechanism for generating a prime
and base.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE,
CKA_PRIME, CKA BASE, and CKA_VALUE (and the CKA_VALUE_BITS
attribute, if it is not already provided in the template) attributes to the new private key;
other attributes required by the Diffie-Hellman public and private key types must be
specified in the templates.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of Diffie-Hellman
prime sizes, in bits.

1252 PKCS #3 Diffie-Hellman key derivation

The PKCS #3 DiffieHellman key derivation mechanism, denoted
CKM_DH_PKCS DERIVE, is a mechanism for key derivation based on Diffie-
Hellman key agreement, as defined in PKCS #3. This is what PKCS #3 calls “phase II".

It has a parameter, which is the public value of the other party in the key agreement
protocol, represented as a Cryptoki “Big integere.(a sequence of bytes, most-
significant byte first).

This mechanism derives a secret key from a Diffie-Hellman private key and the public
value of the other party. It computes a Diffie-Hellman secret value from the public value
and private key according to PKCS #3, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, theCKA_VALUE_LEN attribute of the template. (The truncation removes bytes from
the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

The derived key inherits the values of theCKA_SENSITIVE,

CKA _ALWAYS SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes from the base key. The values of the
CKA_SENSITIVE and CKA_EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA_ALWAYS SENSITIVE attribute set to TRUE, then the template may not specify
that the derived key should have tKA_SENSITIVE attribute set to FALSE;
similarly, if the base key has theKA_NEVER_EXTRACTABLE attribute set to

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 226

TRUE, then the template may not specify that the derived key should have the
CKA_EXTRACTABLE attribute set to TRUE.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of Diffie-Hellman
prime sizes, in bits.

12.6 KEA mechanism parameters

¢+ CK_KEA_DERIVE_PARAMS; CK_KEA _DERIVE_PARAMS PTR

CK_KEA _DERIVE_PARAMS is a dtructure that provides the parameters to the
CKM_KEA_DERIVE mechanism. It isdefined asfollows:

t ypedef struct CK_KEA DERI VE PARANS ({
CK _BBOCOL i sSender;
CK_ULONG ul Randonien;
CK_BYTE_PTR pRandonmA,
CK_BYTE_PTR pRandonB;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;

} CK_KEA DERI VE_PARANS;

Thefields of the structure have the following meanings:

iIsSender Option for generating the key (called a TEK). The
valueis TRUE if the sender (originator) generates the
TEK, FALSE if the recipient is regenerating the TEK.

ulRandomLen size of random Raand Rb, in bytes
pRandomA pointer to Radata
pRandomB pointer to Rb data
ulPublicDataLen other party’s KEA public key size
pPublicData pointer to other party’s KEA public key value

CK_KEA_DERIVE_PARAMS PTR is a pointer to £K_KEA_DERIVE_PARAMS.

Copyright © 1994-1999 RSA Laboratories

Page 227

12.7 KEA mechanisms

12.7.1 KEA key pair generation

The KEA key pair generation mechanism, denoted CKM_KEA_KEY_PAIR_GEN, isa
key pair generation mechanism

It does not have a parameter.

The mechanism generates KEA public/private key pairs with a particular prime, subprime
and base, as specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE
attributes of the template for the public key. Note that this version of Cryptoki does not
include a mechanism for generating these KEA parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE,
CKA_PRIME, CKA_SUBPRIME, CKA BASE, and CKA_VALUE attributes to the
new private key. Other attributes supported by the KEA public and private key types
(specifically, the flags indicating which functions the keys support) may also be specified
in the templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM_INFO structure specify the supported range of KEA prime sizes, in
bits.

12.7.2 11.7.2. KEA key derivation

The KEA key derivation mechanism, denoted CKM_KEA_DERIVE, is a mechanism
for key derivation based on KEA, the Key Exchange Algorithm.

It has a parameter, aCK_KEA_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value)) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

The derived key inherits the vaues of the CKA_SENSITIVE,
CKA _ALWAYS SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes from the base key. The values of the
CKA_SENSITIVE and CKA_EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA_ALWAYS SENSITIVE attribute set to TRUE, then the template may not specify

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 228

that the derived key should have the CKA_SENSITIVE attribute set to FALSE;
similarly, if the base key has the CKA_NEVER_EXTRACTABLE attribute set to
TRUE, then the template may not specify that the derived key should have the
CKA_EXTRACTABLE attribute set to TRUE.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM_INFO structure specify the supported range of KEA prime sizes, in
bits.

12.8 Generic secret key mechanisms

128.1 Generic secret key generation

The generic secret key generation mechanism, denoted
CKM_GENERIC_SECRET_KEY_GEN, is used to generate generic secret keys. The
generated keys take on any attributes provided in the template passed to the
C_GenerateKey cal, and the CKA_VALUE_LEN attribute specifies the length of the
key to be generated.

It does not have a parameter.

The template supplied must specify avalue for the CKA_VALUE_LEN attribute. If the
template specifies an object type and a class, they must have the following values:

CK_OBJECT _CLASS=CKO_SECRET KEY:;
CK_KEY_TYPE = CKK_GENERIC_SECRET;

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of key sizes, in bits.

129 Wrapping/unwrapping private keys (RSA, Diffie-Hellman, and DSA)

Cryptoki Versions 2.01 and up allows the use of secret keys for wrapping and unwrapping

RSA private keys, Diffie-Hellman private keys, and DSA private keys. For wrapping, a
private key is BER-encoded according to PKCS #8’s PrivateKeylnfo ASN.1 type. PKCS
#8 requires an algorithm identifier for the type of the secret key. The object identifiers for
the required algorithm identifiers are as follows:

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}
dhKeyAgreenment OBJECT IDENTIFIER ::= { pkcs-3 1}
i d-dsa OBJECT | DENTIFIER :: = {

i so(1l) nenber-body(2) us(840) x9-57(10040) x9cm(4) 1}

Copyright © 1994-1999 RSA Laboratories

Page 229

where
pkcs-1 OBJECT | DENTIFIER ::= {
i so(1) nenber-body(2) US(840) rsadsi(113549) pkcs(1) 1
}
pkcs-3 OBJECT | DENTIFIER ::= {

I so(1l) nenber-body(2) US(840) rsadsi(113549) pkcs(1l) 3
}

These parameters for the algorithm identifiers have the following types, respectively:

NULL
DHPar anmet er :: = SEQUENCE {
prime | NTEGER, -- p

base | NTECER, --
pri vat eVal ueLengt h | NTEGER OPTI ONAL

}

Dss-Parns ::= SEQUENCE {
p | NTEGER,
g | NTEGER,
g | NTEGER

}

Within the PrivateK eylnfo type:

* RSA private keys are BER-encoded according to PKCS #1's RSAPrivateKey ASN.1
type. This type requires values to be presentalbrthe attributes specific to
Cryptoki's RSA private key objects. In other words, if a Cryptoki library does not
have values for an RSA private key's CKA_MODULUS,

CKA PUBLIC EXPONENT, CKA PRIVATE EXPONENT, CKA_ PRIME 1,
CKA_PRIME_2, CKA_EXPONENT 1, CKA_EXPONENT?2, and
CKA_COEFFICIENT values, it cannot create an RSAPrivateKey BER-encoding of
the key, and so it cannot prepare it for wrapping.

» Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.
» DSA private keys are represented as BER-encoded ASN.1 type INTEGER.

Once a private key has been BER-encoded as a PrivateKeyinfo type, the resulting string
of bytes is encrypted with the secret key. This encryption must be done in CBC mode
with PKCS padding.

Unwrapping a wrapped private key undoes the above procedure. The CBC-encrypted
ciphertext is decrypted, and the PKCS padding is removed. The data thereby obtained are

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 230

parsed as a PrivateK eylnfo type, and the wrapped key is produced. An error will result if
the original wrapped key does not decrypt properly, or if the decrypted unpadded data
does not parse properly, or its type does not match the key type specified in the template
for the new key. The unwrapping mechanism contributes only those attributes specified
in the PrivateK eylnfo type to the newly-unwrapped key; other attributes must be specified
in the template, or will take their default values.

Earlier drafts of PKCS #11 Version 2.0 and Version 2.01 used the object identifier

DSA OBJECT IDENTIFIER ::= { algorithm12 }
al gorithm OBJECT | DENTIFIER ::= {
Iso(l) identifier-organization(3) oiw14) secsig(3)
algorithm2) }

with associated parameters

DSAPar anet ers :: = SEQUENCE {
primel INTECER, -- nodulus p
prime2 | NTEGER, -- nodulus g
base | NTEGER -- base g

}

for wrapping DSA private keys. Note that although the two structures for holding DSA
parameters appear identical when instances of them are encoded, the two corresponding
object identifiers are different.

12.10 About RC2

RC2 is a block cipher which is trademarked by RSA Data Security. It has a variable
keysize and an additional parameter, the “effective number of bits in the RC2 search
space”, which can take on values in the range 1-1024, inclusive. The effective number of
bits in the RC2 search space is sometimes specified by an RC2 “version number”; this
“version number” is1ot the same thing as the “effective number of bits”, however. There

is a canonical way to convert from one to the other.

12.11 RC2 mechanism parameters

¢+ CK_RC2 PARAMS; CK_RC2 PARAMS PTR

CK_RC2 PARAMS provides the parameters to th€KM_RC2 ECB and
CKM_RC2 MAC mechanisms. It holds the effective number of bits in the RC2 search
space. It is defined as follows:

typedef CK_ULONG CK_RC2_PARANES;

Copyright © 1994-1999 RSA Laboratories

Page 231

CK_RC2 PARAMS PTRisapointertoaCK_RC2 PARAMS.

¢ CK_RC2 CBC_PARAMS; CK_RC2 CBC_PARAMS PTR

CK_RC2 CBC _PARAMS is a structure that provides the parameters to the
CKM_RC2 CBC and CKM_RC2 _CBC_PAD mechanisms. It isdefined asfollows:

t ypedef struct CK RC2_CBC PARAMS {
CK _ULONG ul EffectiveBits;
CK_BYTE iv[8];
} CK_RC2_CBC_PARANS;
Thefields of the structure have the following meanings:
ulEffectiveBits the effective number of bitsin the RC2 search space

iv theinitialization vector (1V) for cipher block chaining
mode

CK_RC2 CBC_PARAMS PTRisapointertoaCK_RC2 CBC _PARAMS.

¢+ CK_RC2 MAC_GENERAL_PARAMS;
CK_RC2_MAC_GENERAL_PARAMS PTR

CK_RC2 MAC_GENERAL_PARAMS is a structure that provides the parameters to
the CKM_RC2 MAC_GENERAL mechanism. It isdefined asfollows:

typedef struct CK RC2_MAC GENERAL PARAMS {
CK _ULONG ul EffectiveBits;
CK_ULONG ul MacLengt h;
} CK_RC2_MAC_GENERAL_PARANS;
Thefields of the structure have the following meanings:
ulEffectiveBits the effective number of bitsin the RC2 search space
ulMacLength length of the MAC produced, in bytes

CK_RC2 MAC_GENERAL_PARAMS PTR is a pointer to a
CK_RC2 MAC_GENERAL_PARAMS.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 232

12.12 RC2 mechanisms

12.12.1 RC2 key generation

The RC2 key generation mechanism, denoted CKM_RC2 KEY_GEN, is a key
generation mechanism for RSA Data Security’s block cipher RC2.

It does not have a parameter.

The mechanism generates RC2 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes ti& A_CLASS, CKA_KEY_TYPE, andCKA_VALUE
attributes to the new key. Other attributes supported by the RC2 key type (specifically, the
flags indicating which functions the key supports) may be specified in the template for the
key, or else are assigned default initial values.

For this mechanism, theulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RC2 key sizes, in
bits.

12.12.2 RC2-ECB

RC2-ECB, denotedCKM_RC2 _ECB, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data
Security’s block cipher RC2 and electronic codebook mode as defined in FIPS PUB 81.

It has a parameter,@K_RC2 PARAMS, which indicates the effective number of bits
in the RC2 search space.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of KA _VALUE attribute of the key that is wrapped,
padded on the trailing end with up to seven null bytes so that the resulting length is a
multiple of eight. The output data is the same length as the padded input data. It does not
wrap the key type, key length, or any other information about the key; the application
must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to th&€KA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, theKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as ti@&KA _VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories

Page 233

Table 656558, RC2-ECB: Key And Data L ength

Function Key Input length Output length Comments
type
C_Encrypt RC2 multiple of 8 same as input length no final part
C_Decrypt RC2 multiple of 8 same as input length no final part
C_WrapKey RC2 any input length rounded up to
multiple of 8

C UnwrapKey | RC2 multiple of 8 | determined by type of key

being unwrapped or

CKA_VALUE_LEN

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RC2 effective
number of bits.

12.12.3 RC2-CBC

RC2-CBC, denoted CKM_RC2 CBC, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data
Security’s block cipher RC2 and cipher-block chaining mode as defined in FIPS PUB 81.

It has a parameter,@K_RC2 CBC_PARAMS structure, where the first field indicates
the effective number of bits in the RC2 search space, and the next field is the
initialization vector for cipher block chaining mode.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of KA VALUE attribute of the key that is wrapped,
padded on the trailing end with up to seven null bytes so that the resulting length is a
multiple of eight. The output data is the same length as the padded input data. It does not
wrap the key type, key length, or any other information about the key; the application
must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to th&€KA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, theKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as t&KA VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 234

Table 666659, RC2-CBC: Key And Data Length

Function Key Input length Output length Comments
type

C_Encrypt RC2 multiple of 8 same as input length no final part

C_Decrypt RC2 multiple of 8 same as input length no final part

C_WrapKey RC2 any input length rounded up

to multiple of 8

C UnwrapKey | RC2 multiple of 8 determined by type of

key being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RC2 effective
number of bits.

12.12.4 RC2-CBC with PKCS padding

RC2-CBC with PKCS padding, denoted CKM_RC2 CBC_PAD, is a mechanism for

single- and multiple-part encryption and decryption; key wrapping; and key unwrapping,

based on RSA Data Security’s block cipher RC2; cipher-block chaining mode as defined
in FIPS PUB 81; and the block cipher padding method detailed in PKCS #7.

It has a parameter,@GK_RC2 CBC_PARAMS structure, where the first field indicates
the effective number of bits in the RC2 search space, and the next field is the
initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified forGKeA VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, Diffie-Hellman, and DSA private keys (see Section 12.9 for details). The
entries in_Table 67Fablé7Fable60 for data length constraints when wrapping and
unwrapping keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories

Page 235

Table 676760, RC2-CBC with PKCS Padding: Key And Data L ength

Function Key Input length Output length
type
C_Encrypt RC2 any input length rounded up to
multiple of 8
C_Decrypt RC2 multiple of 8 between 1 and 8 bytes
shorter than input length
C_WrapKey RC2 any input length rounded up to
multiple of 8
C UnwrapKey | RC2 multiple of 8 between 1 and 8 bytes
shorter than input length

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RC2 effective
number of bits.

12.12.5 General-length RC2-MAC

General-length RC2-MAC, denoted CKM_RC2 MAC_GENERAL, isamechanism for
single- and multiple-part signatures and verification, based on RSA Data Security’s block
cipher RC2 and data authentication as defined in FIPS PUB 113.

It has a parameter,GK_RC2 MAC_GENERAL_PARAMS structure, which specifies
the effective number of bits in the RC2 search space and the output length desired from
the mechanism.

The output bytes from this mechanism are taken from the start of the final RC2 cipher
block produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 686861, General-length RC2-MAC: Key And Data Length

Function Key type | Datalength Signaturelength
C_Sign RC2 any 0-8, as specified in parameters
C_Verify RC2 any 0-8, as specified in parameters

For this mechanism, theulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RC2 effective
number of bits.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 236

12.12.6 RC2-MAC

RC2-MAC, denoted by CKM_RC2 MAC, is a specia case of the general-length RC2-
MAC mechanism (see Section 12.125). Instead of taking a
CK_RC2 MAC_GENERAL_PARAMS parameter, it takes a CK_RC2 PARAMS
parameter, which only contains the effective number of bits in the RC2 search space.
RC2-MAC aways produces and verifies 4-byte MACs.

Constraints on key types and the length of data are summarized in the following table:

Table 696962, RC2-MAC: Key And Data L ength

Function Key type | Datalength Signaturelength
C_Sign RC2 any 4
C_Veify RC2 any 4

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RC2 effective
number of bits.

12.13 RC4 mechanisms

12.13.1 RC4 key generation

The RC4 key generation mechanism, denoted CKM_RC4 KEY_GEN, is a key
generation mechanism for RSA Data Security’s proprietary stream cipher RC4.

It does not have a parameter.

The mechanism generates RC4 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes ti& A _CLASS, CKA_KEY_TYPE, andCKA_VALUE
attributes to the new key. Other attributes supported by the RC4 key type (specifically, the
flags indicating which functions the key supports) may be specified in the template for the
key, or else are assigned default initial values.

For this mechanism, theulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RC4 key sizes, in
bits.

Copyright © 1994-1999 RSA Laboratories

Page 237

12.13.2 RC4

RC4, denoted CKM _RC4, is a mechanism for single- and multiple-part encryption and
decryption based on RSA Data Security’s proprietary stream cipher RC4.

It does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the
following table:

Table 707063, RC4: Key And Data L ength

Function Key type I nput Output length Comments
length

C_Encrypt RC4 any same as input length no final part

C_Decrypt RC4 any same as input length no final part

For this mechanism, theulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RC4 key sizes, in
bits.

12.14 About RC5

RC5 is a parametrizable block cipher for which RSA Data Security has patent pending. It
has a variable wordsize, a variable keysize, and a variable number of rounds. The
blocksize of RC5 is always equal to twice its wordsize.

12.15 RC5 mechanism parameters

¢ CK_RC5 PARAMS; CK_RC5 PARAMS PTR

CK_RC5 PARAMS provides the parameters to th€KM_RC5 ECB and
CKM_RC5 MAC mechanisms. ltis defined as follows:

typedef struct CK _RC5_PARAMS {
CK_ULONG ul Wor dsi ze;
CK_ULONG ul Rounds;
} CK_RC5_PARANS;
The fields of the structure have the following meanings:

ulWordsize wordsize of RC5 cipher in bytes

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 238

ulRounds number of rounds of RC5 encipherment

CK_RC5 PARAMS PTRisapointertoaCK_RC5 PARAMS.

¢+ CK_RC5 CBC_PARAMS; CK_RC5 CBC_PARAMS PTR

CK_RC5 CBC _PARAMS is a structure that provides the parameters to the
CKM_RC5 CBC and CKM_RC5 CBC_PAD mechanisms. It isdefined asfollows:

t ypedef struct CK _RC5_CBC PARAMS {
CK_ULONG ul Wr dsi ze;
CK_ULONG ul Rounds;
CK_BYTE_PTR pl v;
CK_ULONG ul I vLen;
} CK_RC5_CBC_PARANS;
Thefields of the structure have the following meanings:
ulWordsize wordsize of RC5 cipher in bytes
ulRounds number of rounds of RC5 encipherment
plv pointer toinitialization vector (IV) for CBC encryption

ullvLen length of initialization vector (must be same as
blocksize)

CK_RC5 CBC_PARAMS PTR isapointer toaCK_RC5 CBC_PARAMS.

¢+ CK_RC5 MAC_GENERAL_PARAMS;
CK_RC5 MAC_GENERAL_PARAMS PTR

CK_RC5 MAC_GENERAL_PARAMS is a structure that provides the parameters to
the CKM_RC5 MAC_GENERAL mechanism. It isdefined asfollows:

t ypedef struct CK RC5_MAC GENERAL PARAMS {
CK_ULONG ul Wr dsi ze;
CK_ULONG ul Rounds;
CK_ULONG ul MacLengt h;
} CK_RC5_MAC GENERAL_PARAMS;
The fields of the structure have the following meanings:
ulWordsize wordsize of RC5 cipher in bytes

ulRounds number of rounds of RC5 encipherment

Copyright © 1994-1999 RSA Laboratories

Page 239

ulMacLength length of the MAC produced, in bytes

CK_RC5 MAC_GENERAL_PARAMS PTR is a pointer to a
CK_RC5 MAC_GENERAL_PARAMS.

12.16 RC5 mechanisms

12.16.1 RC5 key generation

The RC5 key generation mechanism, denoted CKM_RC5 KEY_GEN, is a key
generation mechanism for RSA Data Security’s block cipher RC5.

It does not have a parameter.

The mechanism generates RC5 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes ti& A_CLASS, CKA_KEY_TYPE, andCKA_VALUE
attributes to the new key. Other attributes supported by the RC5 key type (specifically, the
flags indicating which functions the key supports) may be specified in the template for the
key, or else are assigned default initial values.

For this mechanism, theulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RC5 key sizes, in
bytes.

12.16.2 RC5-ECB

RC5-ECB, denotedCKM_RC5 ECB, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data
Security’s block cipher RC5 and electronic codebook mode as defined in FIPS PUB 81.

It has a parameter,@GK_RC5 PARAMS, which indicates the wordsize and number of
rounds of encryption to use.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of KA _VALUE attribute of the key that is wrapped,
padded on the trailing end with null bytes so that the resulting length is a multiple of the
cipher blocksize (twice the wordsize). The output data is the same length as the padded
input data. It does not wrap the key type, key length, or any other information about the
key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to th€KA_KEY_TYPE attributes of the template and, if it has one, and the

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 240

key type supportsit, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 717164, RC5-ECB: Key And Data L ength

Function Key I nput Output length Comments
type length
C_Encrypt RC5 multiple of same as input length no final part
blocksize
C_Decrypt RC5 multiple of same as input length no final part
blocksize
C_WrapKey RC5 any input length rounded up to
multiple of blocksize
C UnwrapKey | RC5 multiple of determined by type of key
blocksize being unwrapped or
CKA_VALUE_LEN

12.16.3 RC5-CBC

RC5-CBC, denoted CKM_RC5 CBC, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data
Security’s block cipher RC5 and cipher-block chaining mode as defined in FIPS PUB 81.

It has a parameter,@K_RC5 CBC_PARAMS structure, which specifies the wordsize
and number of rounds of encryption to use, as well as the initialization vector for cipher
block chaining mode.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of KA VALUE attribute of the key that is wrapped,
padded on the trailing end with up to seven null bytes so that the resulting length is a
multiple of eight. The output data is the same length as the padded input data. It does not
wrap the key type, key length, or any other information about the key; the application
must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to th&€KA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, theKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as t&KA VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories

Page 241

Table 727265, RC5-CBC: Key And Data L ength

Function Key I nput Output length Comments
type length
C_Encrypt RC5 multiple of same as input length no final part
blocksize
C_Decrypt RC5 multiple of same as input length no final part
blocksize
C_WrapKey RC5 any input length rounded up to
multiple of blocksize
C UnwrapKey | RC5 multipleof | determined by type of key
blocksize being unwrapped or
CKA_VALUE_LEN

12.16.4 RC5-CBC with PKCS padding

RC5-CBC with PKCS padding, denoted CKM_RC5 CBC_PAD, is a mechanism for

single- and multiple-part encryption and decryption; key wrapping; and key unwrapping,

based on RSA Data Security’s block cipher RC5; cipher-block chaining mode as defined
in FIPS PUB 81; and the block cipher padding method detailed in PKCS #7.

It has a parameter,@K_RC5 CBC_PARAMS structure, which specifies the wordsize
and number of rounds of encryption to use, as well as the initialization vector for cipher
block chaining mode.

The PKCS padding in this mechanism allows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified forGKeA VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, Diffie-Hellman, and DSA private keys (see Section12.9 for details). The
entries in_Table 73TFabl@3Fable 66 for data length constraints when wrapping and
unwrapping keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 242

Table 737366, RC5-CBC with PKCS Padding: Key And Data L ength

Function Key I nput Output length
type length
C_Encrypt RC5 any input length rounded up to
multiple of blocksize
C_Decrypt RC5 multiple of between 1 and blocksize
blocksize bytes shorter than input
length
C_WrapKey RC5 any input length rounded up to
multiple of blocksize
C UnwrapKey | RC5 multiple of between 1 and blocksize
blocksize bytes shorter than input
length

12.16.5 General-length RC5-MAC

General-length RC5-MAC, denoted CKM_RC5 MAC_GENERAL, isamechanism for
single- and multiple-part signatures and verification, based on RSA Data Security’s block
cipher RC5 and data authentication as defined in FIPS PUB 113.

It has a parameter,GK_RC5 MAC_GENERAL_PARAMS structure, which specifies
the wordsize and number of rounds of encryption to use and the output length desired
from the mechanism.

The output bytes from this mechanism are taken from the start of the final RC5 cipher
block produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 747467, General-length RC2-MAC: Key And Data Length

Function Key type | Datalength Signature length

C_Sign RC2 any 0-blocksize, as specified in
parameters

C_Verify RC2 any 0-blocksize, as specified in
parameters

12.16.6 RC5-MAC

RC5-MAC, denoted bfKM_RC5 MAC, is a special case of the general-length RC5-
MAC mechanism (see Section 12.16.5). Instead of taking a
CK_RC5 MAC_GENERAL_PARAMS parameter, it takes &K_RC5 PARAMS
parameter. RC5-MAC always produces and verifies MACs half as large as the RC5
blocksize.

Copyright © 1994-1999 RSA Laboratories

Page 243

Constraints on key types and the length of data are summarized in the following table:

Table 757568, RC5-MAC: Key And Data L ength

Function Key type | Datalength Signaturelength
C_Sign RC5 any RC5 wordsize = [Iblocksize/2[]
C Veify RC5 any RC5 wordsize = [Iblocksize/2[]

12.17 General block cipher mechanism parameters

¢+ CK_MAC_GENERAL_PARAMS: CK_MAC_GENERAL_PARAMS PTR

CK_MAC_GENERAL_PARAMS provides the parameters to the general-length
MACing mechanisms of the DES, DES3 (triple-DES), CAST, CAST3, CAST128
(CASTS), IDEA, and CDMF ciphers. It holds the length of the MAC that these
mechanisms will produce. It is defined as follows:

typedef CK _ULONG CK_NMAC GENERAL_PARAMNS;

CK_MAC_GENERAL_PARAMS PTR is a pointer to a
CK_MAC_GENERAL_PARAMS.

12.18 General block cipher mechanisms

For brevity’s sake, the mechanisms for the DES, DES3 (triple-DES), CAST, CASTS3,

CAST128 (CASTS5), IDEA, and CDMF block ciphers will be described together here.

Each of these ciphers has the following mechanisms, which will be described in a
templatized form:

12.18.1 General block cipher key generation

Cipher <NAME> has a key generation mechanism, “<NAME> key generation”, denoted
CKM_<NAME> KEY_GEN.

This mechanism does not have a parameter.

The mechanism contributes ti& A_CLASS, CKA_KEY_TYPE, andCKA_VALUE
attributes to the new key. Other attributes supported by the key type (specifically, the
flags indicating which functions the key supports) may be specified in the template for the
key, or else are assigned default initial values.

When DES keys or CDMF keys are generated, their parity bits are set properly, as
specified in FIPS PUB 46-2. Similarly, when a triple-DES key is generated, each of the
DES keys comprising it has its parity bits set properly.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 244

When DES or CDMF keys are generated, it is token-dependent whether or not it is
possible for “weak” or “semi-weak” keys to be generated. Similarly, when triple-DES
keys are generated, it is token dependent whether or not it is possible for any of the
component DES keys to be “weak” or “semi-weak” keys.

When CAST, CAST3, or CAST128 (CASTS) keys are generated, the template for the
secret key must specifyfGKA_VALUE_LEN attribute.

For this mechanism, theulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure may or may not be used. The CAST, CASTS3, and
CAST128 (CAST5) ciphers have variable key sizes, and so for the key generation
mechanisms for these ciphers, tbBMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of key sizes, in bytes.
For the DES, DES3 (triple-DES), IDEA, and CDMF ciphers, these fields are not used.

12.18.2 General block cipher ECB

Cipher <NAME> has an electronic codebook mechanism, “<NAME>-ECB”, denoted
CKM_<NAME>_ECB. It is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping with <NAME>.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of KA _VALUE attribute of the key that is wrapped,
padded on the trailing end with null bytes so that the resulting length is a multiple of
<NAME>’s blocksize. The output data is the same length as the padded input data. It
does not wrap the key type, key length or any other information about the key; the
application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to th&€KA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, theKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as t@&KA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories

Page 245

Table 767669, General Block Cipher ECB: Key And Data Length

Function Key type I nput Output length Comments
length
C_Encrypt <NAME> | multiple of same as input length no final
blocksize part
C_Decrypt <NAME> | multiple of same as input length no fina
blocksize part
C_WrapKey <NAME> any input length rounded up to
multiple of blocksize
C _UnwrapKey | <NAME> any determined by type of key
being unwrapped or
CKA_VALUE_LEN

12.18.3 General block cipher CBC

Cipher <NAME> has a cipher-block chaining mode, “<NAME>-CBC”, denoted
CKM_<NAME>_CBC. Itis a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping with <NAME>.

It has a parameter, an initialization vector for cipher block chaining mode. The
initialization vector has the same length as <NAME>’s blocksize.

Constraints on key types and the length of data are summarized in the following table:

Table 777470, General Block Cipher CBC: Key And Data Length

Function Key type I nput Output length Comments
length
C_Encrypt <NAME> | multiple of same as input length no final
blocksize part
C_Decrypt <NAME> | multiple of same as input length no final
blocksize part
C_WrapKey <NAME> any input length rounded up|to
multiple of blocksize
C_UnwrapKey| <NAME> any determined by type of key
being unwrapped or
CKA_VALUE_LEN

12.18.4 General block cipher CBC with PKCS padding

Cipher <NAME> has a cipher-block chaining mode with PKCS padding, “<NAME>-
CBC with PKCS padding”, denotetdKM_<NAME> CBC_PAD. It is a mechanism

for single- and multiple-part encryption and decryption; key wrapping; and key
unwrapping with <NAME>. All ciphertext is padded with PKCS padding.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 246

It has a parameter, an initialization vector for cipher block chaining mode. The
initialization vector has the same length as <NAME>’s blocksize.

The PKCS padding in this mechanism allows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified forGKeA VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, Diffie-Hellman, and DSA private keys (see Section 12.9 for details). The
entries in_Table 78TFabl@g8Fable 71 for data length constraints when wrapping and
unwrapping keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Table 787874, General Block Cipher CBC with PKCS Padding: Key And Data
Length

Function Key type I nput Output length
length
C_Encrypt <NAME> any input length rounded up to
multiple of blocksize
C_Decrypt <NAME> | multiple off between 1 and blocksize
blocksize bytes shorter than input
length
C_WrapKey <NAME> any input length rounded up fo
multiple of blocksize
C_UnwrapKey| <NAME>| multiple off between 1 and blocksize
blocksize bytes shorter than input
length

12.18.5 General-length general block cipher MAC

Cipher <NAME> has a general-length MACing mode, “General-length <NAME>-
MAC”, denotedCKM_<NAME> MAC_GENERAL. Itis a mechanism for single- and
multiple-part signatures and verification.

It has a parameter,GK_MAC_GENERAL_PARAMS, which specifies the size of the
output.

The output bytes from this mechanism are taken from the start of the final cipher block
produced in the MACing process.

Constraints on key types and the length of input and output data are summarized in the
following table:

Copyright © 1994-1999 RSA Laboratories

Table 797973, General-length General Block Cipher MAC: Key And Data L ength

Function Key type | Datalength Signaturelength

C_Sign <NAME> any 0-blocksize, depending on
parameters

C Veify <NAME> any 0-blocksize, depending on
parameters

12.18.6 General block cipher MAC

Cipher

<NAME> has

CKM_<NAME> MAC.

a MACIing mechanism,
This mechanism is a
CKM_<NAME> MAC_GENERAL mechanism described in Section 12.18.5.

special

always produces an output of size half as large as <NAME>’s blocksize.

This mechanism has no parameters.

Constraints on key types and the length of data are summarized in the following table:

Table 808973, General Block Cipher MAC: Key And Data L ength

Function Key type | Datalength Signaturelength
C_Sign <NAME> any [blocksize/Z]
C_Verify <NAME> any [blocksize/2]

“‘<NAME>-MAC”,

12.19 Double-length DES mechanisms

12.19.1 Double-length DES key generation

The double-length DES key generation mechanism, der@kdd DES2 KEY_GEN,

IS a key generation mechanism for double-length DES keys. The DES keys making up a
double-length DES key both have their parity bits set properly, as specified in FIPS PUB
46-2.

It does not have a parameter.

The mechanism contributes ti& A_CLASS, CKA_KEY_TYPE, andCKA_VALUE
attributes to the new key. Other attributes supported by the double-length DES key type
(specifically, the flags indicating which functions the key supports) may be specified in
the template for the key, or else are assigned default initial values.

Double-length DES keys can be used with all the same mechanisms as triple-DES keys:
CKM_DES ECB, CKM_DES CBC, CKM_DES CBC_PAD,
CKM_DES MAC_GENERAL, and CKM_DES MAC (these mechanisms are
described in templatized form in Section 12.18). Triple-DES encryption with a double-

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 248

length DES key consists of three steps. encryption with the first DES key; decryption
with the second DES key; and encryption with the first DES key.

When double-length DES keys are generated, it is token-dependent whether or not it is
possible for either of the component DES keys to be “weak” or “semi-weak” keys.

12.20 SKIPJACK mechanism parameters

¢ CK_SKIPJACK_PRIVATE_WRAP_PARAMS;
CK_SKIPJACK_PRIVATE_WRAP_PARAMS PTR

CK_SKIPJACK_PRIVATE_WRAP_PARAMS is a structure that provides the
parameters to thEKM_SKIPJACK_PRIVATE_WRAP mechanism. It is defined as
follows:

typedef struct CK_SKI PJACK PRI VATE _WRAP_PARAMS {
CK_ULONG ul Passwor dLen;
CK_BYTE_PTR pPasswor d;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;
CK_ULONG ul PandG.en;
CK_ULONG ul QLen;
CK_ULONG ul Randonien;
CK_BYTE_PTR pRandon,
CK_BYTE_PTR pPri nep;
CK_BYTE_PTR pBaseG
CK_BYTE_PTR pSubpri meQ

} CK_SKI PJACK_PRI VATE_WRAP_PARANES;

The fields of the structure have the following meanings:
ulPasswordLen length of the password

pPassword pointer to the buffer which contains the user-supplied
password

ulPublicDataLen other party’s key exchange public key size
pPublicData pointer to other party’s key exchange public key value
ulPandGLen length of prime and base values
ulQLen length of subprime value
ulRandomLen size of random Ra, in bytes

pRandomA pointer to Ra data

Copyright © 1994-1999 RSA Laboratories

Page 249

pPrimeP pointer to Prime, p, value
pBaseG pointer to Base, g, value
pSubprimeQ pointer to Subprime, g, value

CK_SKIPJACK_PRIVATE_WRAP PARAMS PTR is a pointer to a
CK_PRIVATE_WRAP_PARAMS.

¢ CK_SKIPJACK_RELAYX_PARAMS;
CK_SKIPJACK_RELAYX_PARAMS PTR

CK_SKIPJACK_RELAYX_ PARAMS isastructure that provides the parameters to the
CKM_SKIPJACK_RELAY X mechanism. It isdefined asfollows:

t ypedef struct CK_SKI PJACK RELAYX PARAMS {
CK_ULONG ul O dW appedXLen;
CK_BYTE_PTR pd dW appedX;
CK_ULONG ul d dPasswor dLen;
CK_BYTE_PTR pd dPasswor d;
CK_ULONG ul A dPubl i cDat aLen;
CK_BYTE_PTR pd dPubl i cDat a;
CK_ULONG ul d drRandonien;
CK_BYTE_PTR pAd dRandomA;
CK_ULONG ul NewPasswor dLen;
CK_BYTE_PTR pNewPasswor d;
CK_ULONG ul NewPubl i cDat aLen;
CK_BYTE_PTR pNewPubl i cDat a;
CK_ULONG ul NewRandonien;
CK_BYTE_PTR pNewRandomA,;

} CK_SKI PJACK_RELAYX_ PARANS;

Thefields of the structure have the following meanings:
ulOldWrappedXLen length of old wrapped key in bytes
pOldWrappedX pointer to old wrapper key
ulOldPasswordLen length of the old password

pOldPassword pointer to the buffer which contains the old user-
supplied password

ulOldPublicDataLen old key exchange public key size
pOldPublicData pointer to old key exchange public key value

ulOldRandomLen size of old random Rain bytes

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 250

pOldRandomA pointer to old Ra data
ulNewPasswordLen length of the new password

pNewPassword pointer to the buffer which contains the new user-
supplied password

ulNewPublicDatalLen new key exchange public key size
pNewPublicData pointer to new key exchange public key value
ulNewRandomLen size of new random Rain bytes
pNewRandomA pointer to new Radata
CK_SKIPJACK_RELAYX_PARAMS PTR is a pointer to a
CK_SKIPJACK_RELAYX PARAMS.

12.21 SKIPJACK mechanisms

12.21.1 SKIPJACK key generation

The SKIPJACK key generation mechanism, denoted CKM_SKIPJACK_KEY_GEN, is
a key generation mechanism for SKIPJACK. The output of this mechanism is called a
Message Encryption Key (MEK).

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key.

12.21.2 SKIPJACK-ECB64

SKIPJACK-ECB64, denoted CKM_SKIPJACK_ECB®64, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 64-bit electronic
codebook mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V

IS set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories

Page 251

Table 818174, SKIPJACK-ECB64: Data and L ength

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK | multipleof 8 | same asinput length | no final part
C_Decrypt SKIPJACK | multiple of 8 | same asinput length | no final part

12.21.3 SKIPJACK-CBC64

SKIPJACK-CBC64, denoted CKM_SKIPJACK_ CBC64, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 64-bit cipher-block
chaining mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V

is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 828275, SKIPJACK-CBC64: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK | multiple of § same as input length no final part
C_Decrypt SKIPJACK | multiple of § same as input length no final part

12.21.4 SKIPJACK-OFB64

SKIPJACK-OFB64, denote€KM_SKIPJACK_OFB64, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 64-bit output feedback
mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV
IS set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 252

Table 838376, SKIPJACK-OFB64: Data and L ength

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK | multipleof 8 | same asinput length | no final part

C_Decrypt SKIPJACK | multiple of 8 | same asinput length | no final part

12.21.5 SKIPJACK-CFB64

SKIPJACK-CFB64, denoted CKM _SKIPJACK _CFB64, isamechanism for single- and
multiple-part encryption and decryption with SKIPJACK in 64-bit cipher feedback mode
as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V

is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 848477, SKIPJACK-CFB64: Data and L ength

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK | multiple of § same as input length no final part
C_Decrypt SKIPJACK | multiple of § same as input length no final part

12.21.6 SKIPJACK-CFB32

SKIPJACK-CFB32, denote@KM _SKIPJACK_CFB32, is a mechanism for single- and
multiple-part encryption and decryption with SKIPJACK in 32-bit cipher feedback mode
as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV
IS set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories

Page 253

Table 858578, SKIPJACK-CFB32: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK | multipleof 4 | same asinput length | no final part
C_Decrypt SKIPJACK | multipleof 4 | same asinput length | no final part

12.21.7 SKIPJACK-CFB16

SKIPJACK-CFB16, denoted CKM_SKIPJACK _CFB16, isamechanism for single- and
multiple-part encryption and decryption with SKIPJACK in 16-bit cipher feedback mode
as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V

is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 868679, SKIPJACK-CFB16: Data and L ength

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK | multiple of 4 same as input length no final part
C_Decrypt SKIPJACK | multiple of 4 same as input length no final part

12.21.8 SKIPJACK-CFB8

SKIPJACK-CFB8, denote€KM_SKIPJACK_CFB8, is a mechanism for single- and
multiple-part encryption and decryption with SKIPJACK in 8-bit cipher feedback mode
as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV
IS set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 254

Table 878780, SKIPJACK-CFB8: Data and L ength

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK | multipleof 4 | same asinput length | no final part

C_Decrypt SKIPJACK | multipleof 4 | same asinput length | no final part

12.21.9 SKIPJACK-WRAP

The SKIPJACK-WRAP mechanism, denoted CKM_SKIPJACK_WRAP, is used to
wrap and unwrap a secret key (MEK). It can wrap or unwrap SKIPJACK, BATON, and
JUNIPER keys.

It does not have a parameter.

12.21.10 SKIPJACK-PRIVATE-WRAP

The SKIPJACK-PRIVATE-WRAP mechanism, denoted
CKM_SKIPJACK_PRIVATE_WRAP, is used to wrap and unwrap a private key. It
can wrap KEA and DSA private keys.

It has a parameter, aCK_SKIPJACK_PRIVATE_WRAP_PARAMS structure.

12.21.11 SKIPJACK-RELAYX

The SKIPJACK-RELAY X mechanism, denoted CKM_SKIPJACK_RELAYX, is used
with the C_WrapKey function to “change the wrapping” on a private key which was
wrapped with the SKIPJACK-PRIVATE-WRAP mechanism (see Section 12.21.10).

It has a parameter,GK_SKIPJACK RELAY X PARAMS structure.

Although the SKIPJACK-RELAYX mechanism is used with WrapKey, it differs

from other key-wrapping mechanisms. Other key-wrapping mechanisms take a key
handle as one of the argument<tdNrapKey; however, for the SKIPJACK_RELAYX
mechanism, the [always invalid] value O should be passed as the key handle for
C WrapKey, and the already-wrapped key should be passed in as part of the
CK_SKIPJACK_RELAYX_PARAMS structure.

Copyright © 1994-1999 RSA Laboratories

Page 255

12.22 BATON mechanisms

12.22.1 BATON Kkey generation

The BATON key generation mechanism, denoted CKM_BATON_KEY_GEN, is a key
generation mechanism for BATON. The output of this mechanism is caled a Message
Encryption Key (MEK).

It does not have a parameter.

This mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_ VALUE
attributes to the new key.

12.22.2 BATON-ECB128

BATON-ECB128, denoted CKM_BATON_ECB128, is a mechanism for single- and
multiple-part encryption and decryption with BATON in 128-bit electronic codebook
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V

IS set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 888881, BATON-ECB128: Data and L ength

Function Key type Input length Output length Comments
C_Encrypt BATON multiple of 1§ same as input length no final part
C_Decrypt BATON multiple of 1§ same as input length no final part

12.22.3 BATON-ECB96

BATON-ECB96, denotedCKM_BATON_ECB96, is a mechanism for single- and
multiple-part encryption and decryption with BATON in 96-bit electronic codebook
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV
is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 256

Table 898982, BATON-ECB96: Data and Length

Function Key type Input length Output length Comments
C_Encrypt BATON multipleof 12 | sameasinput length | nofina part
C_Decrypt BATON multipleof 12 | sameasinput length | no final part

12.22.4 BATON-CBC128

BATON-CBC128, denoted CKM_BATON_CBC128, is a mechanism for single- and
multiple-part encryption and decryption with BATON in 128-hit cipher-block chaining
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V

is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 909083, BATON-CBC128: Data and Length

Function Key type | Inputlength Output length Comments
C_Encrypt BATON multiple of 1§ same as input length no final dart
C_Decrypt BATON multiple of 1§ same as input length no final gart

12.22.5 BATON-COUNTER

BATON-COUNTER, denote€KM_BATON_COUNTER, is a mechanism for single-
and multiple-part encryption and decryption with BATON in counter mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV
IS set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories

Page 257

Table 919184, BATON-COUNTER: Data and Length

Function Key type | Input length Output length Comments
C_Encrypt BATON multiple of 16 | same asinput length | no final part
C_Decrypt BATON multiple of 16 | same asinput length | no final part

12.22.6 BATON-SHUFFLE

BATON-SHUFFLE, denoted CKM_BATON_SHUFFLE, is a mechanism for single-
and multiple-part encryption and decryption with BATON in shuffle mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V

is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 929285, BATON-SHUFFLE: Data and L ength

Function Key type | Inputlength Output length Comments
C_Encrypt BATON multiple of 1§ same as input length no final gart
C_Decrypt BATON multiple of 1§ same as input length no final gart

12.22.7 BATON WRAP

The BATON wrap and unwrap mechanism, deno@IM_BATON_WRAP, is a
function used to wrap and unwrap a secret key (MEK). It can wrap and unwrap
SKIPJACK, BATON, and JUNIPER keys.

It has no parameters.
When used to unwrap a key, this mechanism contributes GK&_ CLASS,
CKA_KEY_TYPE, andCKA_VALUE attributes to it.

12.23 JUNIPER mechanisms

12.23.1 JUNIPER key generation

The JUNIPER key generation mechanism, den@&i_JUNIPER_KEY_GEN, is a
key generation mechanism for JUNIPER. The output of this mechanism is called a
Message Encryption Key (MEK).

It does not have a parameter.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 258

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key.

12.23.2 JUNIPER-ECB128

JUNIPER-ECB128, denoted CKM_JUNIPER_ECB128, is a mechanism for single- and
multiple-part encryption and decryption with JUNIPER in 128-bit electronic codebook
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V

IS set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table.
For encryption and decryption, the input and output data (parts) may begin at the same
location in memory.

Table 939386, JUNIPER-ECB128: Data and L ength

Function Key type Input length Output length Comments
C_Encrypt JUNIPER | multiple of 16 same as input length no final part
C_Decrypt JUNIPER | multiple of 16 same as input Ien)gth no final part

12 AL

12.23.3 JUNIPER-CBC128

JUNIPER-CBC128, denot€dKM_JUNIPER_CBC128, is a mechanism for single- and
multiple-part encryption and decryption with JUNIPER in 128-bit cipher-block chaining
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV
is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table.
For encryption and decryption, the input and output data (parts) may begin at the same
location in memory.

Copyright © 1994-1999 RSA Laboratories

Page 259

Table 949487, JUNIPER-CBC128: Data and L ength

Function Key type Input length Output length Comments
C_Encrypt JUNIPER | multipleof 16 | same asinput length | no final part
C_Decrypt JUNIPER | multipleof 16 | same asinput length | no final part

12.23.4 JUNIPER-COUNTER

JUNIPER COUNTER, denoted CKM_JUNIPER_COUNTER, is a mechanism for
single- and multiple-part encryption and decryption with JUNIPER in counter mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV

is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table.

For encryption and decryption, the input and output data (parts) may begin at the same
location in memory.

Table 959588, JUNIPER-COUNTER: Data and Length

Function Key type Input length Output length Comments
C_Encrypt JUNIPER | multiple of 16 same as input length no final part
C_Decrypt JUNIPER | multiple of 16 same as input length no final part

1221

12.23.5 JUNIPER-SHUFFLE

JUNIPER-SHUFFLE, denotecCKM_JUNIPER_SHUFFLE, is a mechanism for
single- and multiple-part encryption and decryption with JUNIPER in shuffle mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV
IS set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table.

For encryption and decryption, the input and output data (parts) may begin at the same
location in memory.

Table 969689, JUNIPER-SHUFFLE: Data and L ength

Function Key type Input length Output length Comments
C_Encrypt JUNIPER | multiple of 16 same as input length no final part
C_Decrypt JUNIPER | multiple of 16 same as input Ien)gth no final part

12 AL

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 260

12.23.6 JUNIPER WRAP

The JUNIPER wrap and unwrap mechanism, denoted CKM_JUNIPER_WRAP, is a
function used to wrap and unwrap an MEK. It can wrap or unwrap SKIPJACK, BATON,
and JUNIPER keys.

It has no parameters.
When used to unwrap a key, this mechanism contributes the CKA_CLASS,
CKA_KEY_TYPE, and CKA_VALUE attributestoit.

12.24 MD2 mechanisms

12.24.1 MD2

The MD2 mechanism, denoted CKM_MD2, is a mechanism for message digesting,
following the MD2 message-digest algorithm defined in RFC 1319.

It does not have a parameter.

Constraints on the length of data are summarized in the following table:

Table 979790, MD2: Data L ength

Function | Datalength | Digest length
C Digest any 16

12.24.2 General-length MD2-HMAC

The general-length MD2-HMAC mechanism, denoted
CKM_MD2 HMAC_GENERAL, is a mechanism for signatures and verification. It
uses the HMAC construction, based on the MD2 hash function. The keys it uses are
generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-16 (the output size of MD2 is
16 bytes). Signatures (MACSs) produced by this mechanism will be taken from the start of
the full 16-byte HMAC output.

Copyright © 1994-1999 RSA Laboratories

Page 261

Table 989891, General-length MD2-HMAC: Key And Data L ength

Function Key type Data Signature length
length

C_Sign generic secret any 0-16, depending on parameters

C Verify generic secret any 0-16, depending on parameters

12.24.3 MD2-HMAC

The MD2-HMAC mechanism, denoted CKM_MD2 HMAC, is a specia case of the
general-length MD2-HMAC mechanism in Section 12.24.2.

It has no parameter, and always produces an output of length 16.

12.24.4 MD2 key derivation

MD2 key derivation, denoted CKM_MD2 KEY DERIVATION, is a mechanism
which provides the capability of deriving a secret key by digesting the value of another
secret key with MD2.

The value of the base key is digested once, and the result is used to make the value of
derived secret key.

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Itslength will be 16 bytes (the output size of
MD2).

If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

If no length was provided in the template, but a key type is, then that key type must
have a well-defined length. If it does, then the key produced by this mechanism will
be of the type specified in the template. If it doesn’t, an error will be returned.

If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more than 16 bytes, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 262

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either TRUE or FALSE. If omitted, these
attributes each take on some default value.

* If the base key has its CKA_ALWAYS SENSITIVE attribute set to FALSE, then
the derived key will as well. If the base key has its CKA_ALWAYS SENSITIVE
attribute set to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE
attribute set to the same value asits CKA_SENSITIVE attribute.

» Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has
its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

12.25 MD5 mechanisms

12.25.1 MD5

The MD5 mechanism, denoted CKM_MD5, is a mechanism for message digesting,
following the MD5 message-digest algorithm defined in RFC 1321.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table.
For single-part digesting, the data and the digest may begin at the same location in
memory.

Table 999992, MD5: Data L ength

Function | Datalength | Digest length
C Digest any 16

12.25.2 General-length MD5-HMAC

The general-length MD5-HMAC mechanism, denoted
CKM_MD5 HMAC_GENERAL, is a mechanism for signatures and verification. It
uses the HMAC construction, based on the MD5 hash function. The keys it uses are
generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-16 (the output size of MD5 is
16 bytes). Signatures (MACSs) produced by this mechanism will be taken from the start of
the full 16-byte HMAC output.

Copyright © 1994-1999 RSA Laboratories

Page 263

Table 10020093, General-length MD5-HMAC: Key And Data Length

Function Key type Data Signature length
length

C_Sign generic secret any 0-16, depending on parameters

C Verify generic secret any 0-16, depending on parameters

12.25.3 MD5-HMAC

The MD5-HMAC mechanism, denoted CKM_MD5 HMAC, is a specia case of the
general-length MD5-HMAC mechanism in Section 12.25.2.

It has no parameter, and always produces an output of length 16.

12.25.4 MD5 key derivation

MD5 key derivation, denoted CKM_MD5 KEY DERIVATION, is a mechanism
which provides the capability of deriving a secret key by digesting the value of another
secret key with MD5.

The value of the base key is digested once, and the result is used to make the value of
derived secret key.

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Itslength will be 16 bytes (the output size of
MD5).

If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

If no length was provided in the template, but a key type is, then that key type must
have a well-defined length. If it does, then the key produced by this mechanism will
be of the type specified in the template. If it doesn’t, an error will be returned.

If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more than 16 bytes, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 264

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either TRUE or FALSE. If omitted, these
attributes each take on some default value.

* If the base key has its CKA_ALWAYS SENSITIVE attribute set to FALSE, then
the derived key will as well. If the base key has its CKA_ALWAYS SENSITIVE
attribute set to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE
attribute set to the same value asits CKA_SENSITIVE attribute.

» Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has
its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

12.26 SHA-1 mechanisms

12.26.1 SHA-1

The SHA-1 mechanism, denoted CKM_SHA 1, is a mechanism for message digesting,
following the Secure Hash Algorithm defined in FIPS PUB 180-1.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table.
For single-part digesting, the data and the digest may begin at the same location in
memory.

Table 10116194, SHA-1: Data L ength

Function I nput Digest length
length
C Digest any 20

12.26.2 General-length SHA-1-HMAC

The general-length SHA-1-HMAC mechanism, denoted
CKM_SHA 1 HMAC_GENERAL, is a mechanism for signatures and verification. It
uses the HMAC construction, based on the SHA-1 hash function. The keys it uses are
generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-20 (the output size of SHA-1
is 20 bytes). Signatures (MACs) produced by this mechanism will be taken from the start
of the full 20-byte HMAC output.

Copyright © 1994-1999 RSA Laboratories

Page 265

Table 10210295, General-length SHA-1-HMAC: Key And Data L ength

Function Key type Data Signature length
length

C_Sign generic secret any 0-20, depending on parameters

C Verify generic secret any 0-20, depending on parameters

12.26.3 SHA-1-HMAC

The SHA-1-HMAC mechanism, denoted CKM_SHA 1 HMAC, isaspecial case of the
general-length SHA-1-HMAC mechanism in Section 12.26.2.

It has no parameter, and always produces an output of length 20.

12.26.4 SHA-1 key derivation

SHA-1 key derivation, denoted CKM_SHA1 KEY_DERIVATION, is a mechanism
which provides the capability of deriving a secret key by digesting the value of another
secret key with SHA-1.

The value of the base key is digested once, and the result is used to make the value of
derived secret key.

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Itslength will be 20 bytes (the output size of
SHA-1).

If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

If no length was provided in the template, but a key type is, then that key type must
have a well-defined length. If it does, then the key produced by this mechanism will
be of the type specified in the template. If it doesn’t, an error will be returned.

If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more than 20 bytes, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 266

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either TRUE or FALSE. If omitted, these
attributes each take on some default value.

* If the base key has its CKA_ALWAYS SENSITIVE attribute set to FALSE, then
the derived key will as well. If the base key has its CKA_ALWAYS SENSITIVE
attribute set to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE
attribute set to the same value asits CKA_SENSITIVE attribute.

» Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has
its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

12.27 FASTHASH mechanisms

12.27.1 FASTHASH

The FASTHASH mechanism, denoted CKM_FASTHASH, is a mechanism for message
digesting, following the U. S. government’s algorithm.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table:

Table 10310396, FASTHASH: Data L ength

Function I nput Digest length
length
C_Digest any 40

12.28 Password-based encryption/authentication mechanism parameters

¢+ CK_PBE_PARAMS; CK_PBE_PARAMS PTR

CK_PBE_PARAMS is a structure which provides all of the necessary information
required by the CKM_PBE mechanisms (see PKCS #5 and PKCS #12 for information on
the PBE generation mechanisms) and the CKM_PBA SHAl1 WITH_SHA1 HMAC
mechanism. It is defined as follows:

Copyright © 1994-1999 RSA Laboratories

Page 267

typedef struct CK _PBE_PARAMS {
CK_CHAR_PTR pl ni t Vect or;
CK_CHAR_PTR pPasswor d;
CK_ULONG ul Passwor dLen;
CK_CHAR PTR pSal t;
CK_ULONG ul Sal t Len;
CK _ULONG ul Iteration;

} CK_PBE_PARANS;

The fields of the structure have the following meanings:

pl nitVector pointer to the location that receives the 8-byte
initialization vector (1V), if an 1V isrequired;

pPassword pointsto the password to be used in the PBE key
generation;

ulPasswordLen length in bytes of the password information;
pSalt pointsto the salt to be used in the PBE key generation;
ulSaltLen length in bytes of the salt information;
ullteration ~ number of iterations required for the generation.

CK_PBE_PARAMS PTR isapointer to aCK_PBE_PARAMS.

12.29 PKCS#5 and PKCS #5-style passwor d-based encryption mechanisms

The mechanisms in this section are for generating keys and 1Vs for performing password-
based encryption. The method used to generate keys and 1Vsis specified in PKCS #5.
12.29.1 MD2-PBE for DES-CBC

MD2-PBE for DES-CBC, denoted CKM_PBE_MD2 DES CBC, is a mechanism used
for generating a DES secret key and an IV from a password and a salt value by using the
MD2 digest algorithm and an iteration count. This functionality is defined in PK CS#5.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input

information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 268

12.29.2 MD5-PBE for DES-CBC

MD5-PBE for DES-CBC, denoted CKM_PBE_MD5 DES CBC, is a mechanism used
for generating a DES secret key and an 1V from a password and a salt value by using the
MD5 digest algorithm and an iteration count. This functionality is defined in PK CS#5.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

12.29.3 MD5-PBE for CAST-CBC

MD5-PBE for CAST-CBC, denoted CKM_PBE_MD5 CAST_CBC, is a mechanism
used for generating a CAST secret key and an IV from a password and a salt value by
using the MD5 digest algorithm and an iteration count. This functionality is analogous to
that defined in PKCS#5 for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST key generated by this mechanism may be specified in the
supplied template; if it is not present in the template, it defaults to 8 bytes.

12.29.4 MD5-PBE for CAST3-CBC

MD5-PBE for CAST3-CBC, denoted CKM_PBE_MD5 CAST3 CBC, is a mechanism
used for generating a CAST3 secret key and an IV from a password and a salt value by
using the MD5 digest algorithm and an iteration count. This functionality is analogous to
that defined in PKCS#5 for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST3 key generated by this mechanism may be specified in the
supplied template; if it is not present in the template, it defaults to 8 bytes.
12.29.5 MD5-PBE for CAST128-CBC (CAST5-CBC)

MD5-PBE for CAST128-CBC (CAST5-CBC), denoted
CKM_PBE_MD5 CAST128 CBC or CKM_PBE_MD5 CAST5 CBC, is a
mechanism used for generating a CAST128 (CAST5) secret key and an IV from a

Copyright © 1994-1999 RSA Laboratories

Page 269

password and a salt value by using the MD5 digest algorithm and an iteration count. This
functionality is analogous to that defined in PKCS#5 for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST128 (CAST5) key generated by this mechanism may be specified
in the supplied template; if it is not present in the template, it defaults to 8 bytes.

12.29.6 SHA-1-PBE for CAST128-CBC (CAST5-CBC)

SHA-1-PBE for CAST128-CBC (CAST5-CBC), denoted
CKM_PBE_SHA1 CAST128 CBC or CKM_PBE_SHA1l CAST5 CBC, is a
mechanism used for generating a CAST128 (CAST5) secret key and an IV from a
password and a salt value by using the SHA-1 digest algorithm and an iteration count.
This functionality is analogous to that defined in PKCS#5 for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST128 (CAST5) key generated by this mechanism may be specified
in the supplied template; if it is not present in the template, it defaults to 8 bytes.

12.30 PKCS#12 passwor d-based encryption/authentication mechanisms

The mechanisms in this section are for generating keys and 1Vs for performing password-
based encryption or authentication. The method used to generate keys and Vs is based
on amethod that was specified in the original draft of PKCS #12.

We specify here a general method for producing various types of pseudo-random bits

from a password, p; a string of salt bits, s; and an iteration count, c. The “type” of
pseudo-random bits to be produced is identified by an identificationl Bytdfye meaning
of which will be discussed later.

Let H be a hash function built around a compression funétidet' x Z,' - Z," (that is,

H has a chaining variable and output of lengtlbits, and the message input to the
compression function of H sbits). For MD2 and MD5y=128 andv=512; for SHA-1,
u=160 andv=512.

We assume here thatandv are both multiples of 8, as are the lengths in bits of the
password and salt strings and the numbef pseudo-random bits required. In addition,
u andv are of course nonzero.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 270

1. Construct astring, D (the “diversifier”), by concatenating8 copies oiD.

2. Concatenate copies of the salt together to create a Stohdengthvils/vlbits (the
final copy of the salt may be truncated to cregte Note that if the salt is the empty
string, then so IS

3. Concatenate copies of the password together to create aPsoirigngthviip/vibits
(the final copy of the password may be truncated to crepte Note that if the
password is the empty string, then sB.is

4. Setl=9JP to be the concatenation $&andP.
5. Setj=/ull

6. Fori=1, 2, ...,j, do the following:

a) SetA=HYD||), thec" hash oD||. That is, compute the hash Bfi; compute
the hash of that hash; etc.; continue in this fashion until a totahashes have
been computed, each on the result of the previous hash.

b) Concatenate copies Af to create a string of lengthv bits (the final copy oA
may be truncated to cred@

c) Treatingl as a concatenatidsp, |4, ..., lx1 of v-bit blocks, wher&k=[$/v(3[p/v(]
modify | by settingl;=(I;+B+1) mod 2 for eachj. To perform this addition, treat
eachv-bit block as a binary number represented most-significant bit first.

7. Concatenatéy, Ay, ..., A together to form a pseudo-random bit strifg,

8. Use the firsn bits of A as the output of this entire process.

When the password-based encryption mechanisms presented in this section are used to
generate a key and 1V (if needed) from a password, salt, and an iteration count, the above
algorithm is used. To generate a key, the identifier bytes set to the value 1; to
generate an IV, the identifier byi® is set to the value 2.

When the password based authentication mechanism presented in this section is used to
generate a key from a password, salt, and an iteration count, the above algorithm is used.
The identifier bytdD is set to the value 3.

12.30.1 SHA-1-PBE for 128-bit RC4

SHA-1-PBE for 128-bit RC4, denotedKM_PBE_SHA1 RC4 128, is a mechanism

used for generating a 128-bit RC4 secret key from a password and a salt value by using

Copyright © 1994-1999 RSA Laboratories

Page 271

the SHA-1 digest algorithm and an iteration count. The method used to generate the key
Is described above on page 26927110.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process. The parameter also has a field to hold the
location of an application-supplied buffer which will receive an 1V; for this mechanism,
the contents of thisfield are ignored, since RC4 does not requirean V.

The key produced by this mechanism will typically be used for performing password-
based encryption.

12.30.2 SHA-1-PBE for 40-bit RC4

SHA-1-PBE for 40-bit RC4, denoted CKM_PBE_SHA1 RC4 40, is a mechanism used
for generating a 40-bit RC4 secret key from a password and a salt value by using the
SHA-1 digest algorithm and an iteration count. The method used to generate the key is
described above on page 26927110.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process. The parameter also has a field to hold the
location of an application-supplied buffer which will receive an 1V; for this mechanism,
the contents of thisfield are ignored, since RC4 does not requirean V.

The key produced by this mechanism will typically be used for performing password-
based encryption.

12.30.3 SHA-1-PBE for 3-key tripleeDES-CBC

SHA-1-PBE for 3-key triple-DES-CBC, denoted
CKM_PBE_SHA1 DES3 EDE_CBC, is a mechanism used for generating a 3-key
triple-DES secret key and IV from a password and a salt value by using the SHA-1 digest
algorithm and an iteration count. The method used to generate the key and IV is
described above on page 26927110. Each byte of the key produced will have its low-
order bit adjusted, if necessary, so that a valid 3-key triple-DES key with proper parity
bitsis obtained.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The key and IV produced by this mechanism will typically be used for performing
password-based encryption.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 272

12.30.4 SHA-1-PBE for 2-key triple-DES-CBC

SHA-1-PBE for 2-key triple-DES-CBC, denoted
CKM_PBE_SHA1 DES2 EDE_CBC, is a mechanism used for generating a 2-key
triple-DES secret key and IV from a password and a salt value by using the SHA-1 digest
algorithm and an iteration count. The method used to generate the key and IV is
described above on page 26927110. Each byte of the key produced will have its low-
order bit adjusted, if necessary, so that a valid 2-key triple-DES key with proper parity
bitsis obtained.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The key and IV produced by this mechanism will typically be used for performing
password-based encryption.

12.30.5 SHA-1-PBE for 128-bit RC2-CBC

SHA-1-PBE for 128-bit RC2-CBC, denoted CKM_PBE_SHA1 RC2 128 CBC, is a
mechanism used for generating a 128-bit RC2 secret key and IV from a password and a
salt value by using the SHA-1 digest algorithm and an iteration count. The method used
to generate the key and IV is described above on page 26927110.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

When the key and 1V generated by this mechanism are used to encrypt or decrypt, the
effective number of bits in the RC2 search space should be set to 128. This ensures
compatibility with the ASN.1 Object Identifier pbeW t hSHA1ANd128Bi t RC2- CBC.

The key and IV produced by this mechanism will typically be used for performing
password-based encryption.

12.30.6 SHA-1-PBE for 40-bit RC2-CBC

SHA-1-PBE for 40-bit RC2-CBC, denoted CKM_PBE_SHA1 RC2 40 CBC, is a
mechanism used for generating a 40-bit RC2 secret key and 1V from a password and a
salt value by using the SHA-1 digest algorithm and an iteration count. The method used
to generate the key and IV is described above on page 26927110.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input

information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

Copyright © 1994-1999 RSA Laboratories

Page 273

When the key and 1V generated by this mechanism are used to encrypt or decrypt, the
effective number of bits in the RC2 search space should be set to 40. This ensures
compatibility with the ASN.1 Object Identifier ppbeW t hSHA1ANd40Bi t RC2- CBC.

The key and IV produced by this mechanism will typically be used for performing
password-based encryption.

12.30.7 SHA-1-PBA for SHA-1-HMAC

SHA-1-PBA for SHA-1-HMAC, denoted CKM_PBA_SHA1 WITH_SHA1 HMAC,
is a mechanism used for generating a 160-bit generic secret key from a password and a
salt value by using the SHA-1 digest algorithm and an iteration count. The method used
to generate the key is described above on page 26927110.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process. The parameter also has a field to hold the
location of an application-supplied buffer which will receive an IV; for this mechanism,
the contents of this field are ignored, since authentication with SHA-1-HMAC does not
requirean V.

The key generated by this mechanism will typically be used for computing a SHA-1
HMAC to perform password-based authentication (not password-based encryption). At
the time of thiswriting, thisis primarily done to ensure the integrity of a PKCS #12 PDU.

12.31 SET mechanism parameters

¢ CK_KEY_ WRAP _SET_OAEP PARAMS;
CK_KEY_WRAP _SET_OAEP PARAMS PTR

CK_KEY_WRAP_SET_OAEP_PARAMS is a structure that provides the parameters
tothe CKM_KEY_WRAP_SET_OAEP mechanism. It isdefined asfollows:

typedef struct CK _KEY_WRAP_SET_QAEP_PARAMS ({
CK_BYTE bBC;
CK_BYTE_PTR pX;
CK_ULONG ul XLen;
} CK_KEY_WRAP_SET_OAEP_PARANS;
Thefields of the structure have the following meanings:
bBC block contents byte

pX concatenation of hash of plaintext data (if present) and
extradata (if present)

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 274

ulXLen length in bytes of concatenation of hash of plaintext
data (if present) and extradata (if present). O if neither
IS present

CK_KEY_WRAP SET OAEP PARAMS PTR is a pointer to a
CK_KEY_WRAP _SET_OAEP PARAMS,

12.32 SET mechanisms

12.32.1 OAEP key wrapping for SET

The OAEP key wrapping for SET mechanism, denoted
CKM_KEY_WRAP_SET_OAEP, is amechanism for wrapping and unwrapping a DES
key with an RSA key. The hash of some plaintext data and/or some extra data may
optionally be wrapped together with the DES key. This mechanism is defined in the SET
protocol specifications.

It takes a parameter, a CK_KEY_WRAP_SET_OAEP_PARAMS dtructure. This
structure holds the “Block Contents” byte of the data and the concatenation of the hash of
plaintext data (if present) and the extra data to be wrapped (if present). If neither the hash
nor the extra data is present, this is indicated byltkieen field having the value 0.

When this mechanism is used to unwrap a key, the concatenation of the hash of plaintext
data (if present) and the extra data (if present) is returned following the convention
described in Section 11.2 on producing output. Note that if the inpGtsitowr apK ey

are such that the extra data is not returned.,(the buffer supplied in the
CK_KEY_WRAP_SET_OAEP PARAMS structure is NULL_PTR), then the
unwrapped key object will not be created, either.

Be aware that when this mechanism is used to unwrap a kéyB@handpX fields of the
parameter supplied to the mechanism may be modified.

If an application use€_UnwrapKey with CKM_KEY_WRAP_SET_OAEP, it may be
preferable for it simply to allocate a 128-byte buffer for the concatenation of the hash of
plaintext data and the extra data (this concatenation is never larger than 128 bytes), rather
than calling C_UnwrapKey twice. Each call of C_UnwrapKey with
CKM_KEY_WRAP_SET_OAEP requires an RSA decryption operation to be
performed, and this computational overhead can be avoided by this means.

Copyright © 1994-1999 RSA Laboratories

Page 275

12.33 LYNKS mechanisms

12.33.1 LYNKSkey wrapping

The LYNKS key wrapping mechanism, denoted CKM_WRAP_LYNKS, is a
mechanism for wrapping and unwrapping secret keys with DES keys. It can wrap any 8-
byte secret key, and it produces a 10-byte wrapped key, containing a cryptographic
checksum.

It does not have a parameter.

To wrap a 8-byte secret key K with a DES key W, this mechanism performs the following
steps.

1. Initialize two 16-bit integers, sumy and sumy, to O.
2. Loop through the bytes of K from first to last.

3. Set sumy= sumy+the key byte (treat the key byte as a number in the range O-
255).

4. Set sump= sump+ sumy.
5. Encrypt K with Win ECB mode, obtaining an encrypted key, E.

6. Concatenate the last 6 bytes of E with sum,, representing sum, most-significant bit
first. Theresult isan 8-byte block, T.

7. Encrypt T with Win ECB mode, obtaining an encrypted checksum, C.
8. Concatenate E with the last 2 bytes of C to obtain the wrapped key.

When unwrapping a key with this mechanism, if the cryptographic checksum does not
check out properly, an error is returned. In addition, if a DES key or CDMF key is
unwrapped with this mechanism, the parity bits on the wrapped key must be set
appropriately. If they are not set properly, an error is returned.

12.34 SSL mechanism parameters

¢ CK_SSL3 RANDOM_DATA

CK_SSL3 RANDOM _DATA is a structure which provides information about the
random data of a client and a server in an SSL context. This structure is used by both the
CKM_SSL3 MASTER_KEY_DERIVE and the
CKM_SSL3 KEY_AND_MAC_DERIVE mechanisms. It isdefined asfollows:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 276

typedef struct CK_SSL3_RANDOM DATA {
CK_BYTE_PTR pd i ent Random
CK_ULONG ul d i ent Randonien;
CK_BYTE_PTR pSer ver Random
CK_ULONG ul Server Randonien;

} CK_SSL3_RANDOM DATA;

The fields of the structure have the following meanings:
pClientRandom pointer to the client’s random data
ulClientRandomLen length in bytes of the client’'s random data
pServerRandom pointer to the server’s random data
ulServerRandomLen length in bytes of the server’'s random data
¢ CK_SSL3 MASTER_KEY_DERIVE_PARAMS;
CK_SSL3 MASTER_KEY_DERIVE_PARAMS PTR

CK_SSL3 MASTER_KEY_DERIVE_PARAMS is a structure that provides the
parameters to th€KM_SSL.3 MASTER_KEY_DERIVE mechanism. It is defined as
follows:

typedef struct CK _SSL3 MASTER KEY_DERI VE_PARAMS {
CK_SSL3_RANDOM DATA Random nf o;
CK_VERSI ON_PTR pVer si on;

} CK_SSL3_MASTER KEY_DERI VE_PARAMS;

The fields of the structure have the following meanings:
Randomilnfo client’s and server’s random data information.

pVersion pointer to aCK_VERSION structure which receives
the SSL protocol version information

CK_SSL3 MASTER_KEY_DERIVE_PARAMS PTR is a pointer to a
CK_SSL3 MASTER_KEY_DERIVE_PARAMS.
¢ CK_SSL3 KEY_MAT OUT; CK_SSL3 KEY_MAT OUT_PTR

CK_SSL3 KEY_MAT_OUT is a structure that contains the resulting key handles and
initialization vectors after performing a C_DeriveKey function with the
CKM_SSL3 KEY_AND_MAC_DERIVE mechanism. It is defined as follows:

Copyright © 1994-1999 RSA Laboratories

Page 277

typedef struct CK _SSL3_KEY_MAT_QOUT {
CK_OBJECT_HANDLE hd i ent MacSecr et ;
CK_OBJECT_HANDLE hServer MacSecr et ;
CK_OBJECT_HANDLE hd i ent Key;
CK_OBJECT_HANDLE hSer ver Key;
CK_BYTE_PTR pl Vd i ent;
CK_BYTE_PTR pl VSer ver,

} CK_SSL3_KEY_NAT_QOUT;

The fields of the structure have the following meanings:
hClientMacSecret key handle for the resulting Client MAC Secret key
hServerMacSecret key handle for the resulting Server MAC Secret key
hClientkey key handle for the resulting Client Secret key
hServerKey key handle for the resulting Server Secret key

plVClient pointer to alocation which receives the initialization
vector (1V) created for the client (if any)

plVServer pointer to alocation which receives the initialization
vector (1V) created for the server (if any)

CK_SSL3 KEY_MAT_OUT_PTR isapointer toaCK_SSL3 KEY_MAT_OUT.

¢ CK_SSL3 KEY_MAT_PARAMS; CK_SSL3 KEY_MAT_PARAMS PTR

CK_SSL3 KEY_MAT_PARAMS is a structure that provides the parameters to the
CKM_SSL3 KEY_AND _MAC _ DERIVE mechanism. It isdefined asfollows:

typedef struct CK _SSL3_KEY_MAT_PARANS ({
CK_ULONG ul MacSi zel nBits;
CK_ULONG ul KeySi zel nBits;
CK_ULONG ul 1 VSi zel nBi ts;
CK_BBOCOL bl sExport;
CK_SSL3_RANDOM DATA Randoni nf o;
CK_SSL3_KEY_NMAT_QUT_PTR pRet ur nedKeyMat eri al ;
} CK_SSL3_KEY_NAT_PARAMS;

The fields of the structure have the following meanings:

ulMacSzelnBits thelength (in bits) of the MACing keys agreed upon
during the protocol handshake phase

ulKeySzelnBits thelength (in bits) of the secret keys agreed upon
during the protocol handshake phase

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 278

ullVSzelnBits thelength (in bits) of the IV agreed upon during the
protocol handshake phase. If no 1V isrequired, the
length should be set to 0

bisExport ~ aBoolean value which indicates whether the keys have
to be derived for an export version of the protocol

Randominfo client’s and server’'s random data information.

pReturnedKeyMaterial points to aCK_SSL3 KEY_MAT_OUT structures
which receives the handles for the keys generated and
the IVs

CK_SSL3 KEY_MAT_PARAMS PTR is a pointer to a
CK_SSL3 KEY_MAT_PARAMS,

12.35 SSL mechanisms

12.35.1 Pre_master key generation

Pre_master key generation in SSL 3.0, denoted
CKM_SSL3 PRE_MASTER_KEY_GEN, is a mechanism which generates a 48-byte
generic secret key. It is used to produce the "pre_master" key used in SSL version 3.0.

It has one parameter, GK_VERSION structure, which provides the client's SSL
version number.

The mechanism contributes ti& A_CLASS, CKA_KEY_TYPE, andCKA_VALUE
attributes to the new key (as well as KA _VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism duriGg @ener ateK ey call may indicate

that the object class is CKO_SECRET_KEY, the key type is
CKK_GENERIC_SECRET, and theCKA_VALUE_LEN attribute has value 48.
However, since these facts are all implicit in the mechanism, there is no need to specify
any of them.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure both indicate 48 bytes.

12.35.2 Master key derivation

Master key derivation in SSL 3.0, denotedM_SSL.3 MASTER_KEY_DERIVE, is

a mechanism used to derive one 48-byte generic secret key from another 48-byte generic

Copyright © 1994-1999 RSA Laboratories

Page 279

secret key. It is used to produce the "master_secret” key used in the SSL protocol from
the "pre_master" key. This mechanism returns the value of the client version which is
built into the "pre_master" key aswell as a handle to the derived "master_secret” key.

It has a parameter, a CK_SSL3 MASTER_KEY_DERIVE_PARAMS structure, which
allows for the passing of random data to the token as well as the returning of the protocol
version number which is part of the pre-master key. This structure is defined in Section
12.34.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during aC_GenerateK ey call may indicate
that the object class is CKO_SECRET_KEY, the key type s
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48.
However, since these facts are al implicit in the mechanism, there is no need to specify
any of them.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either TRUE or FALSE. If omitted, these
attributes each take on some default value.

» If the base key has its CKA_ALWAYS SENSITIVE attribute set to FALSE, then
the derived key will as well. If the base key has its CKA_ALWAYS SENSITIVE
attribute set to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE
attribute set to the same value asits CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has
its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure both indicate 48 bytes.

Note that the CK_VERSION structure pointed to by the
CK_SSL3 MASTER_KEY_DERIVE_PARAMS structure’s pVersion field will be
modified by theC_DeriveKey call. In particular, when the call returns, this structure will
hold the SSL version associated with the supplied pre_master key.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 280

12.35.3 Key and MAC derivation

Key, MAC and A% derivation in SSL 3.0, denoted
CKM_SSL3 KEY_AND_MAC_DERIVE, is a mechanism is used to derive the
appropriate cryptographic keying material used by a "CipherSuite" from the
"master_secret”" key and random data. This mechanism returns the key handles for the
keys generated in the process, aswell asthe Vs created.

It has a parameter, a CK_SSL3 KEY_MAT_PARAMS structure, which alows for the
passing of random data as well as the characteristic of the cryptographic material for the
given CipherSuite and a pointer to a structure which receives the handles and 1Vs which
were generated. This structure is defined in Section 12.34.

This mechanism contributes to the creation of four distinct keys on the token and returns
two 1Vs (if 1Vs are requested by the caller) back to the caller. The keys are al given an
object classof CKO_SECRET_KEY.

The two MACing keys ("client_write MAC_secret" and "server_write MAC_secret")
are always given a type of CKK_GENERIC_SECRET. They are flagged as valid for
signing, verification, and derivation operations.

The other two keys ("client_write_key" and "server_write_key") are typed according to
information found in the template sent along with this mechanism during aC_DeriveK ey
function call. By default, they are flagged as valid for encryption, decryption, and
derivation operations.

IVs will be generated and returned if the ullVSzelnBits field of the
CK_SSL_KEY_MAT_PARAMS field has a nonzero value. If they are generated, their
length in bits will agree with the value in the ullVSzelnBits field.

All four keys inherit the values of the CKA_SENSITIVE,
CKA _ALWAYS SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes from the base key. The template provided
to C_DeriveKey may not specify values for any of these attributes which differ from
those held by the base key.

Note that the CK_SSL3 KEY_MAT_OUT dtructure pointed to by the
CK_SSL3 KEY_MAT_PARAMS structure’s pReturnedKeyMaterial field will by
modified by theC_DeriveKey call. In particular, the four key handle fields in the
CK_SSL3 KEY_MAT_OUT structure will be modified to hold handles to the newly-
created keys; in addition, the buffers pointed to by Gike SSL3 KEY_MAT_OUT
structure’splVClient and plVServer fields will have IVs returned in them (if IVs are
requested by the caller). Therefore, these two fields must point to buffers with sufficient
space to hold any IVs that will be returned.

Copyright © 1994-1999 RSA Laboratories

Page 281

This mechanism departs from the other key derivation mechanisms in Cryptoki in its
returned information. For most key-derivation mechanisms, C_DeriveKey returns a
single key handle as a result of a successful completion. However, since the
CKM_SSL3 KEY_AND_MAC_DERIVE mechanism returns all of its key handles in
the CK_SSL3 KEY_MAT_OUT structure pointed to by the
CK_SSL3 KEY_MAT_PARAMS structure specified as the mechanism parameter, the
parameter phKey passed to C_DeriveK ey is unnecessary, and should beaNULL_PTR.

If acall to C_DeriveKey with this mechanism fails, then none of the four keys will be
created on the token.
12.354 MD5MACingin SSL 3.0

MD5 MACing in SSL3.0, denoted CKM_SSL3 MD5 MAC, isamechanism for single-
and multiple-part signatures (data authentication) and verification using MD5, based on
the SSL 3.0 protocol. Thistechniqueisvery similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in
bytes of the signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the
following table:

Table 10416498, MD5 MACingin SSL 3.0: Key And Data L ength

Function Key type Data Signature length
length
C_Sign generic secret any 4-8, depending on
parameters
C Veify generic secret any 4-8, depending on
parameters

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of generic secret key
sizes, in bits.

12.35.5 SHA-1 MACingin SSL 3.0

SHA-1 MACing in SSL3.0, denoted CKM_SSL3 SHA1 MAC, is a mechanism for
single- and multiple-part signatures (data authentication) and verification using SHA-1,
based on the SSL 3.0 protocol. Thistechniqueis very similar to the HMAC technique.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 282

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in
bytes of the signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the
following table:

Table 10520599, SHA-1 MACingin SSL 3.0: Key And Data L ength

Function Key type Data Signature length
length

C_Sign generic secret any 4-8, depending on parameters

C Verify generic secret any 4-8, depending on parameters

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of generic secret key
sizes, in bits.

12.36 Parametersfor miscellaneous simple key derivation mechanisms

¢ CK_KEY_DERIVATION_STRING DATA;
CK_KEY_DERIVATION_STRING DATA_PTR

CK_KEY_DERIVATION_STRING_DATA isastructure that holds a pointer to a byte

string and the byte string’'s length. It provides the parameters for the
CKM_CONCATENATE_BASE_AND_DATA,
CKM_CONCATENATE_DATA_AND_BASE, and

CKM_XOR_BASE_AND_DATA mechanisms. ltis defined as follows:
typedef struct CK_KEY_DERI VATI ON_STRI NG DATA {
CK_BYTE_PTR pbDat a;

CK_ULONG ul Len;
} CK_KEY_DERI VATI ON_STRI NG _DATA,;

The fields of the structure have the following meanings:
pData pointer to the byte string
ulLen length of the byte string

CK_KEY_DERIVATION_STRING DATA PTR is a pointer to a
CK_KEY_DERIVATION_STRING_DATA.

Copyright © 1994-1999 RSA Laboratories

Page 283

¢ CK_EXTRACT_PARAMS; CK_EXTRACT_PARAMS PTR

CK_KEY_EXTRACT_PARAMS provides the parameter to the
CKM_EXTRACT_KEY_FROM_KEY mechanism. It specifies which bit of the base
key should be used as the first bit of the derived key. It is defined as follows:

t ypedef CK_ULONG CK_EXTRACT PARANB:

CK_EXTRACT_PARAMS_PTR isapointer to aCK_EXTRACT_PARAMS.

12.37 Miscellaneous simple key derivation mechanisms

12.37.1 Concatenation of a base key and another key

This mechanism, denoted CKM_CONCATENATE_BASE _AND_KEY, derives a
secret key from the concatenation of two existing secret keys. The two keys are specified
by handles; the values of the keys specified are concatenated together in a buffer.

This mechanism takes a parameter, a CK_OBJECT_HANDLE. This handle produces

the key value information which is appended to the end of the base key's value
information (the base key is the key whose handle is supplied as an argument to
C_DeriveKey).

For example, if the value of the base kepx01234567, and the value of the other
key is Ox89ABCDEF, then the value of the derived key will be taken from a buffer
containing the strin@x0123456789ABCDEF.

» If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the sum of the
lengths of the values of the two original keys.

* If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

* If nolength is provided in the template, but a key type is, then that key type must have
a well-defined length. If it does, then the key produced by this mechanism will be of
the type specified in the template. If it doesn’t, an error will be returned.

* If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 284

If the requested type of key requires more bytes than are available by concatenating the
two original keys’ values, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

» If either of the two original keys has BKA_SENSITIVE attribute set to TRUE, so
does the derived key. If not, then the derived k€KsA_SENSITIVE attribute is
set either from the supplied template or from a default value.

» Similarly, if either of the two original keys has @KA_EXTRACTABLE attribute
set to FALSE, so does the derived key. If not, then the derived key's
CKA_EXTRACTABLE attribute is set either from the supplied template or from a
default value.

e The derived keysSCKA_ALWAYS SENSITIVE attribute is set to TRUE if and
only if both of the original keys have thédKA_ALWAYS SENSITIVE attributes
set to TRUE.

» Similarly, the derived key'SCKA_NEVER_EXTRACTABLE attribute is set to
TRUE if and only if both of the original keys have their
CKA_NEVER_EXTRACTABLE attributes set to TRUE.

12.37.2 Concatenation of a base key and data

This mechanism, denoteGKM_CONCATENATE_BASE_AND_DATA, derives a
secret key by concatenating data onto the end of a specified secret key.

This mechanism takes a parameterCH_KEY_DERIVATION_STRING_DATA
structure, which specifies the length and value of the data which will be appended to the
base key to derive another key.

For example, if the value of the base kepx$1234567, and the value of the data is
0x89ABCDEF, then the value of the derived key will be taken from a buffer containing
the stringdx0123456789 ABCDEF.

* If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the sum of the
lengths of the value of the original key and the data.

» If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

* If nolength is provided in the template, but a key type is, then that key type must have

a well-defined length. If it does, then the key produced by this mechanism will be of
the type specified in the template. If it doesn’t, an error will be returned.

Copyright © 1994-1999 RSA Laboratories

Page 285

» If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If aDES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than are available by concatenating the
original key’s value and the data, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

» If the base key has iSKA_SENSITIVE attribute set to TRUE, so does the derived
key. If not, then the derived keyGKA_SENSITIVE attribute is set either from the
supplied template or from a default value.

« Similarly, if the base key has iIGKA_EXTRACTABLE attribute set to FALSE, so
does the derived key. If not, then the derived keyisA EXTRACTABLE
attribute is set either from the supplied template or from a default value.

* The derived keysSCKA_ALWAYS SENSITIVE attribute is set to TRUE if and
only if the base key has IBKA_ALWAYS _SENSITIVE attribute set to TRUE.

e Similarly, the derived keysSCKA NEVER_EXTRACTABLE attribute is set to
TRUE if and only if the base key has @& A_NEVER_EXTRACTABLE attribute
set to TRUE.

12.37.3 Concatenation of data and a base key

This mechanism, denoteBKM_CONCATENATE_DATA_AND BASE, derives a
secret key by prepending data to the start of a specified secret key.

This mechanism takes a parameterCH_KEY DERIVATION_STRING_DATA
structure, which specifies the length and value of the data which will be prepended to the
base key to derive another key.

For example, if the value of the base ke@x©01234567, and the value of the data is
0x89ABCDEF, then the value of the derived key will be taken from a buffer containing
the stringDx89ABCDEF01234567.

* If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the sum of the
lengths of the data and the value of the original key.

* If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 286

» If nolengthis provided in the template, but a key type is, then that key type must have
awell-defined length. If it does, then the key produced by this mechanism will be of
the type specified in the template. If it doesn’t, an error will be returned.

* If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than are available by concatenating the
data and the original key's value, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

» If the base key has iSKA_SENSITIVE attribute set to TRUE, so does the derived
key. If not, then the derived keyGKA_SENSITIVE attribute is set either from the
supplied template or from a default value.

» Similarly, if the base key has IGKA_EXTRACTABLE attribute set to FALSE, so
does the derived key. If not, then the derived keyisA_ EXTRACTABLE
attribute is set either from the supplied template or from a default value.

e The derived keysSCKA_ALWAYS SENSITIVE attribute is set to TRUE if and
only if the base key has IBKA_ALWAYS SENSITIVE attribute set to TRUE.

» Similarly, the derived key'SCKA_NEVER_EXTRACTABLE attribute is set to
TRUE if and only if the base key has @K A_NEVER_EXTRACTABLE attribute
set to TRUE.

12.37.4 XORing of a key and data

XORing key derivation, denote@KM_XOR_BASE_AND_DATA, is a mechanism
which provides the capability of deriving a secret key by performing a bit XORing of a
key pointed to by a base key handle and some data.

This mechanism takes a parameterCH_KEY_DERIVATION_STRING_DATA
structure, which specifies the data with which to XOR the original key’s value.

For example, if the value of the base kepx$1234567, and the value of the data is
0x89ABCDEF, then the value of the derived key will be taken from a buffer containing
the string0x88888888.

Copyright © 1994-1999 RSA Laboratories

Page 287

* If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the minimum of
the lengths of the data and the value of the original key.

» If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

» If nolengthis provided in the template, but a key type is, then that key type must have
awell-defined length. If it does, then the key produced by this mechanism will be of
the type specified in the template. If it doesn’t, an error will be returned.

* If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than are available by taking the shorter of
the data and the original key’'s value, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

» If the base key has iBKA_SENSITIVE attribute set to TRUE, so does the derived
key. If not, then the derived keyGKA_SENSITIVE attribute is set either from the
supplied template or from a default value.

» Similarly, if the base key has IGKA_EXTRACTABLE attribute set to FALSE, so
does the derived key. If not, then the derived keyisA_ EXTRACTABLE
attribute is set either from the supplied template or from a default value.

e The derived keysSCKA_ALWAYS SENSITIVE attribute is set to TRUE if and
only if the base key has IBKA_ALWAYS SENSITIVE attribute set to TRUE.

» Similarly, the derived key'SCKA_NEVER_EXTRACTABLE attribute is set to
TRUE if and only if the base key has @K A_NEVER_EXTRACTABLE attribute
set to TRUE.

12.37.5 Extraction of one key from another key

Extraction of one key from another key, denoted
CKM_EXTRACT_KEY_FROM_KEY, is a mechanism which provides the capability
of creating one secret key from the bits of another secret key.

This mechanism has a parameter, a CK_EXTRACT_PARAMS, which specifies which bit of the
original key should be used as the first bit of the newly-derived key.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 288

We give an example of how this mechanism works. Suppose a token has a secret key with the 4-
byte value 0x329F84A9. We will derive a 2-byte secret key from this key, starting at bit position
21 (i.e., the value of the parameter to the CKM_EXTRACT_KEY_FROM_KEY mechanism is 21).

1. We write the key’s value in binary: 0011 0010 1001 1111 1000 0100 1010 1001. We
regard this binary string as holding the 32 bits of the key, labelled asb,, b, ..., b,,.

2. We then extract 16 consecutive bits (i.e., 2 bytes) from this binary string, starting at bit b,. We
obtain the binary string 1001 0101 0010 0110.

3. The value of the new key is thus 0x9526.

Note that when constructing the value of the derived key, it is permissible to wrap around the
end of the binary string representing the original key’s value.

If the original key used in this process is sensitive, then the derived key must also be sensitive for
the derivation to succeed.

* If nolength or key typeis provided in the template, then an error will be returned.

» If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

» If nolengthis provided in the template, but a key type is, then that key type must have
awell-defined length. If it does, then the key produced by this mechanism will be of
the type specified in the template. If it doesn’t, an error will be returned.

« If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than the original key has, an error is
generated.

This mechanism has the following rules about key sensitivity and extractability:

» If the base key has iSKA_SENSITIVE attribute set to TRUE, so does the derived
key. If not, then the derived keyGKA_SENSITIVE attribute is set either from the
supplied template or from a default value.

« Similarly, if the base key has iIGKA_EXTRACTABLE attribute set to FALSE, so
does the derived key. If not, then the derived keyisA EXTRACTABLE
attribute is set either from the supplied template or from a default value.

* The derived keysSCKA_ALWAYS SENSITIVE attribute is set to TRUE if and
only if the base key has IBKA_ALWAYS _SENSITIVE attribute set to TRUE.

Copyright © 1994-1999 RSA Laboratories

Page 289

e Similarly, the derived keySCKA NEVER_EXTRACTABLE attribute is set to
TRUE if and only if the base key has @& A_NEVER_EXTRACTABLE attribute
set to TRUE.

12.38 RIPE-MD 128 mechanisms

12.38.1 RIPE-MD 128

The RIPE-MD 128 mechanism, denot&@KM RIPEMD128, is a mechanism for
message digesting, following the RIPE-MD 128 message-digest algorithm.

It does not have a parameter.

Constraints on the length of data are summarized in the following table:

Table 106106, RIPE-MD 128: Data L ength

[Function |Data length|Digest length
C_Digest any 16

12.38.2 General-length RIPE-MD 128-HMAC

The general-length RIPE-MD 128-HMAC mechanism, denoted
CKM RIPEMD128 HMAC GENERAL, is a mechanism for signatures and
verification. It uses the HMAC construction, based on the RIPE-MD 128 hash function.

The keys it uses are generic secret keys.

It has a parameter,GK MAC GENERAL PARAMS, which holds the length in bytes

of the desired output. This length should be in the range 0-16 (the output size of |RIPE-

MD 128 is 16 bytes). Signatures (MACs) produced by this mechanism will be taken
the start of the full 16-byte HMAC output.

Table 107107, General-length RIPE-MD 128-HMAC.:

Data
length

C_Sign |generic secret any

Function| Key type Signatur e length

0-16, depending on

parameters
. . | 0-16, depending on
C_Verify|generic secret any arameters

Copyright © 1994-1999 RSA Laboratories.

from

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 290

12.38.3 RIPE-MD 128-HMAC

The RIPE-MD 128-HMAC mechanism, denoted CKM RIPEMD128 HMAC, is a
special case of the genera-length RIPE-M D 128-HMAC mechanism in Section 12.38.2.

It has no parameter, and always produces an output of length 16.

12.39 RIPE-MD 160 mechanisms

12.39.1 RIPE-MD 160

The RIPE-MD 160 mechanism, denoted CKM RIPEMD160, is a mechanism for
message digesting, following the RIPE-MD 160 message-digest algorithm defined in
1SO-10118.

It does not have a parameter.

Constraints on the length of data are summarized in the following table:

Table 108108, RIPE-M D 160: Data L ength

[Function Data length|Digest length
C _Digest any 20

12.39.2 General-length RIPE-MD 160-HMAC

The general-length RIPE-MD 160-HMAC mechanism, denoted
CKM_RIPEMD160 HMAC GENERAL, is a mechanism for signatures and
verification. It uses the HMAC construction, based on the RIPE-MD 160 hash function.
Thekeysit uses are generic secret keys.

It has a parameter, aCK_MAC GENERAL PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-20 (the output size of RIPE-
MD 160 is 20 bytes). Signatures (MACs) produced by this mechanism will be taken from
the start of the full 20-byte HMAC output.

Copyright © 1994-1999 RSA Laboratories

Page 291

Table 109109, General-length RIPE-MD 160-HMAC:

Data
length
C_Sign |generic secret| any | 0-20, depending on parameters
C_Verify |generic secretl any | 0-20, depending on parameters

Function| Key type Signaturelength

12.39.3 RIPE-MD 160-HMAC

The RIPE-MD 160-HMAC mechanism, denoted CKM RIPEMD160 HMAC, is a
specia case of the general-length RIPE-MD 160-HMA C mechanism in Section 1.

It has no parameter, and always produces an output of length 20.

13. Cryptoki tipsand reminders

In this section, we clarify, review, and/or emphasize a few odds and ends about how
Cryptoki works.

13.1 Operations, sessions, and threads

In Cryptoki, there are several different types of operations which can be “active” in a
session. An active operation is essentially one which takes more than one Cryptoki
function call to perform. The types of active operations are object searching; encryption;
decryption; message-digesting; signature with appendix; signature with recovery;
verification with appendix; and verification with recovery.

A given session can have 0, 1, or 2 operations active at a time. It can only have 2
operations active simultaneously if the token supports this; moreover, those two
operations must be one of the four following pairs of operations: digesting and
encryption; decryption and digesting; signing and encryption; decryption and verification.

If an application attempts to initialize an operation (make it active) in a session, but this
cannot be accomplished because of some other active operation(s), the application
receives the error value CKR_OPERATION_ACTIVE. This error value can also be
received if a session has an active operation and the application attempts to use that
session to perform any of various operations which do not become “active”, but which
require cryptographic processing, such as using the token’s random number generator, or
generating/wrapping/unwrapping/deriving a key.

Different threads of an application should never share sessions, unless they are extremely
careful not to make function calls at the same time. This is true even if the Cryptoki
library was initialized with locking enabled for thread-safety.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 292

13.2 Multiple Application Access Behavior

When multiple applications, or multiple threads within an application, are accessing a set
of common objects the issue of object protection becomes important. This is especially
the case when application A activates an operation using object O, and application B
attempts to delete O before application A has finished the operation. Unfortunately,
variation in device capabilities makes an absolute behavior specification impractical.
Genera guidelines are presented here for object protection behavior.

Whenever possible, deleting an object in one application should not cause that object to
become unavailable to another application or thread that is using the object in an active
operation until that operation is complete. For instance, application A has begun a
signature operation with private key P and application B attempts to delete P while the
signature is in progress. In this case, one of two things should happen. The object is
deleted from the device but the operation is allow to complete because the operation uses
atemporary copy of the object, or the delete operation blocks until the signature operation
has completed. If neither of these actions can be supported by an implementation, then the
error code CKR OBJECT HANDLE INVALID may be returned to application A to
indicate that the key being used to perform its active operation has been del eted.

Whenever possible, changing the value of an object attribute should impact the behavior
of active operations in other applications or threads. If this can not be supported by an
implementation, then the appropriate error code indicating the reason for the failure
should be returned to the application with the active operation.

13.3 Objects, attributes, and templates

In Cryptoki, every object (with the possible exception of RSA private keys) aways
possesses all possible attributes specified by Cryptoki for an object of its type. This
means, for example, that a DiffieeHellman private key object always possesses a
CKA_VALUE_BITS attribute, even if that attribute wasn’t specified when the key was
generatedin such a case, the proper value for the attribute is computed during the key
generation process).

In general, a Cryptoki function which requires atemplate for an object needs the template

to specify—either explicitly or implicitly—any attributes that are not specified elsewhere.

If a template specifies a particular attribute more than once, the function can return
CKR_TEMPLATE_INVALID or it can choose a particular value of the attribute from
among those specified and use that value. In any event, object attributes are always
single-valued.

13.4 Signing with recovery

Signing with recovery is a general alternative to ordinary digital signatures (“signing with
appendix”) which is supported by certain mechanisms. Recall that for ordinary digital

Copyright © 1994-1999 RSA Laboratories

Page 293

signatures, a signature of a message is computed as some function of the message and the

signer’s private key; this signature can then be used (together with the message and the
signer’s public key) as input to the verification process, which yields a simple “signature
valid/signature invalid” decision.

Signing with recovery also creates a signature from a message and the signer’s private
key. However, to verify this signature, no message is required as input. Only the
signature and the signer’'s public key are input to the verification process, and the
verification process outputs either “signature invalid” or—if the signature is valid—the
original message.

Consider a simple example with t8&M_RSA_X_ 509 mechanism. Here, a message is

a byte string which we will consider to be a number modul{the signer's RSA
modulus). When this mechanism is used for ordinary digital signatures (signatures with
appendix), a signature is computed by raising the message to the signer's private
exponent modulo. To verify this signature, a verifier raises the signature to the signer’s
public exponent module, and accepts the signature as valid if and only if the result
matches the original message.

If CKM_RSA X 509 is used to create signatures with recovery, the signatures are
produced in exactly the same fashion. For this particular mechaagmpumber
modulon is a valid signature. To recover the message from a signature, the signature is
raised to the signer’s public exponent modulo

Copyright © 1994-1999 RSA Laboratories.

APPENDIX A Page 295

Appendix A: Token Profiles

This appendix describes “profilesi’e.,, sets of mechanisms, which a token should
support for various common types of application. It is expected that these sets would be
standardized as parts of the various applications, for instance within a list of requirements
on the module that provides cryptographic services to the application (which may be a
Cryptoki token in some cases). Thus, these profiles are intended for reference only at this
point, and are not part of this standard.

The following table summarizes the mechanisms relevant to two common types of
application:

Table A-1, Mechanisms and profiles

Application
Gover nment Cellular Digital Packet

M echanism Authentication-only Data
CKM_DSA_KEY_PAIR_GEN v

CKM_DSA v

CKM_DH_PKCS KEY_PAIR_GEN v
CKM_DH_PKCS DERIVE v
CKM_RC4_KEY_GEN v
CKM_RC4 v
CKM_SHA_1 v

A.1 Government authentication-only

The U.S. government has standardized on the Digital Signature Algorithm as defined in
FIPS PUB 186 for signatures and the Secure Hash Algorithm as defined in FIPS PUB
180-1 for message digesting. The relevant mechanisms include the following:

DSA key generation (512-1024 bits)

DSA (512-1024 bits)

SHA-1
Note that this version of Cryptoki does not have a mechanism for generating DSA
parameters.
A.2 Cdlular Digital Packet Data

Cellular Digital Packet Data (CDPD) is a set of protocols for wireless communication.
The basic set of mechanisms to support CDPD applications includes the following:

Diffie-Hellman key generation (256-1024 bits)

Copyright © 1994-1999 RSA Laboratories.

Page296 PKCS#11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD VvV2.01

Diffie-Hellman key derivation (256-1024 bits)
RC4 key generation (40-128 bits)
RC4 (40-128 bits)

(Theinitial CDPD security specification limits the size of the Diffie-Hellman key to 256
bits, but it has been recommended that the size be increased to at least 512 bits.)

Note that this version of Cryptoki does not have a mechanism for generating Diffie-
Hellman parameters.

Copyright © 1994-1999 RSA Laboratories

APPENDIX B

Page 297

Appendix B: Comparison of Cryptoki and Other APIs

This appendix compares Cryptoki with the following cryptographic APIs:

e ANSI N13-94 - Guideline X9.TG-12-199X, Using Tessera in Financial Systems. An
Application Programming Interface, April 29, 1994

* X/Open GCS-API - Generic Cryptographic Service API, Draft 2, February 14, 1995

B.1 FORTEZZA CIPG, Rev. 1.52

This document defines an API to the FORTEZZA PCMCIA Crypto Card. Itisat alevel
similar to Cryptoki. The following table lists the FORTEZZA CIPG functions, together
with the equivalent Cryptoki functions:

TableB-1, FORTEZZA CIPG vs. Cryptoki

FORTEZZA CIPG

Equivalent Cryptoki

Cl_ChangePIN C_InitPIN, C_SetPIN

Cl_CheckPIN C Login

Cl_Close C_CloseSession

Cl_Decrypt C_Decryptlnit, C_Decrypt, C_DecryptUpdate,

C_DecryptFinal

Cl_DeleteCertificate

C_DestroyObject

Cl_DeleteKey C_DestroyObject
Cl_Encrypt C_Encryptinit, C_Encrypt, C_EncryptUpdate,
C_EncryptFinal
Cl_ExtractX C_WrapKey
Cl_Generatel V C_GenerateRandom
Cl_GenerateMEK C_GenerateKey
Cl_GenerateRa C_GenerateRandom
Cl_GenerateRandom C_GenerateRandom
Cl_GenerateTEK C_GenerateKey
Cl_GenerateX C_GenerateKeyPair
Cl_GetCertificate C_FindObjects

Cl_Configuration

C_GetTokenlnfo

Cl_GetHash C _Digestinit, C_Digest, C_DigestUpdate, and
C_DigestFinal

Cl_GetlV No equivalent

Cl_GetPersonalityList C_FindObjects

Copyright © 1994-1999 RSA Laboratories.

Page 298PK CS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01 DRAFT

FORTEZZA CIPG Equivalent Cryptoki

Cl_GetState C_GetSessioninfo

Cl_GetStatus C_GetTokenlnfo

Cl_GetTime C_GetTokenInfo

Cl_Hash C Digestinit, C_Digest, C_DigestUpdate, and
C DigestFina

Cl_Initiaize C Initialize

Cl_InitializeHash C _Digestlnit

Cl_InstallX C_UnwrapKey

Cl_LoadCertificate C_CreateObject

Cl_LoadDSAParameters C_CreateObject

Cl_LoadInitVaues C_SeedRandom

Cl_LoadlV C_Encryptinit, C_Decryptinit

Cl_LoadK C_Signinit

Cl_LoadPublicKkeyParameters | C_CreateObject

Cl_LoadPIN C_SetPIN

Cl_LoadX C_CreateObject

Cl_Lock Implicit in session management

Cl_Open C_OpenSession

Cl_RelayX C_WrapKey

Cl_Reset C CloseAllSessions

Cl_Restore Implicit in session management

Cl_Save Implicit in session management

Cl_Select C_OpenSession

Cl_SetConfiguration No equivalent

Cl_Setkey C_Encryptinit, C_DecryptInit

Cl_SetMode C_Encryptinit, C_Decryptinit

Cl_SetPersonality C_CreateObject

Cl_SetTime No equivalent

Cl_Sign C_Signinit, C_Sign

Cl_Terminate C CloseAllSessions

Cl_Timestamp C_Signinit, C_Sign

Cl_Unlock Implicit in session management

Cl_UnwrapKey C_UnwrapKey

Cl_VerifySignature C_Verifylnit, C_Verify

Cl_VerifyTimestamp C Verifylnit, C_Verify

Cl_WrapKey C_WrapKey

Cl_Zeroize C_InitToken

Copyright © 1994-1999 RSA Laboratories

APPENDIX B

B.2 GCS-API

This proposed standard defines an APl to high-level security services such as
authentication of identities and data-origin, non-repudiation, and separation and
protection. It is at a higher level than Cryptoki. The following table lists the GCS-API
functions with the Cryptoki functions used to implement the functions. Note that full
support of GCS-API isleft for future versions of Cryptoki.

Table B-2, GCS-API vs. Cryptoki

GCS-API Cryptoki implementation
retrieve_ CC

release CC

generate_hash C_Digestinit, C_Digest

generate_random_number

C_GenerateRandom

generate_checkvalue

C_Signinit, C_Sign, C_SignUpdeate,
C_SignFinal

verify checkvalue

C Verifylnit, C Verify, C_VerifyUpdate,
C VerifyFinal

data_encipher C_Encryptinit, C_Encrypt, C_EncryptUpdate,
C_EncryptFinal

data_decipher C_Decryptinit, C_Decrypt, C_DecryptUpdate,
C_DecryptFina

create CC

derive key C DeriveKey

generate_key C_GenerateKey

store CC

delete CC

replicate CC

export_key C_WrapKey

import_key C_UnwrapKey

archive_CC C_WrapKey

restore_ CC C_UnwrapKey

set_key state

generate key pattern

verify_key pattern

derive clear_key C DeriveKey

generate clear_key C_GenerateKey

load key parts

clear_key encipher C_WrapKey

Copyright © 1994-1999 RSA Laboratories.

Page 300PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01 DRAFT

GCS-API

Cryptoki implementation

clear_key decipher

C_UnwrapKey

change key context

load_initial_key

generate initial_key

set_current_master_key

protect_under_new_master key

protect_under_current_master_key

initialise_random_number_generator

C_SeedRandom

install_algorithm

de install_algorithm

disable_algorithm

enable_algorithm

set_defaults

Copyright © 1994-1999 RSA Laboratories

