
Copyright © 2000 RSA Security Inc. License to copy this document is granted provided that it is identified
as “RSA Security Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document.

PKCS #11 v2.10 Amd. 1 Draft 2 — pkcs-11v2-1a1d2.doc

PKCS #11 v2.10 Amendment 1: ECC

RSA Laboratories

DRAFT 2 — November 30, 2000

Editor’s note: This is the third and final draft version of this amendment 1 to PKCS #11
v2.10 [1], which is available for a 30-day last call public review period. Please send
comments and suggestions, both technical and editorial, to pkcs-editor@rsasecurity.com
or cryptoki@rsasecurity.com.

Table of Contents

TABLE OF CONTENTS ... 1

1. INTRODUCTION... 2

2. CHANGES TO SECTION 3, "REFERENCES".. 2

3. CHANGES TO SECTION 4, "DEFINITIONS" .. 3

4. CHANGES TO SECTION 5, "SYMBOLS AND ABBREVIATIONS"....................................... 3

5. CHANGES TO SECTION 9, "GENERAL DATA TYPES".. 3

5.1 CHANGES TO SECTION 9.4, "OBJECT TYPES"... 3
5.2 CHANGES TO SECTION 9.5, "DATA TYPES FOR MECHANISMS" .. 3
5.3 CHANGES TO SECTION 9.6, "FUNCTION TYPES"... 4

6. CHANGES TO SECTION 10, "OBJECTS".. 4

6.1 CHANGES TO SECTION 10.8, "PUBLIC KEY OBJECTS" ... 4
6.2 CHANGES TO SECTION 10.8.3, "ECDSA PUBLIC KEY OBJECTS" ... 5
6.3 CHANGES TO SECTION 10.9, "PRIVATE KEY OBJECTS" ... 6
6.4 CHANGES TO SECTION 10.9.3, "ECDSA PRIVATE KEY OBJECTS" ... 6

7. CHANGES TO SECTION 11, "FUNCTIONS"... 7

7.1 CHANGES TO SECTION 11.1.6, "ALL OTHER CRYPTOKI FUNCTION RETURN VALUES" 7
7.2 CHANGES TO SECTION 11.7, "OBJECT MANAGEMENT FUNCTIONS"... 8
7.3 CHANGES TO SECTION 11.14, "KEY MANAGEMENT FUNCTIONS".. 8

8. CHANGES TO SECTION 12, "MECHANISMS"... 9

8.1 CHANGES TO SECTION 12.3, “ABOUT ECDSA” .. 10
8.2 CHANGES TO SECTION 12.4.1, “ECDSA KEY PAIR GENERATION” .. 11
8.3 CHANGES TO SECTION 12.4.2, “ECDSA WITHOUT HASHING”.. 12
8.4 CHANGES TO SECTION 12.4.3, “ECDSA WITH SHA-1”... 13
8.5 NEW SECTIONS 12.4.5 THROUGH 12.4.8 ... 13
8.6 CHANGES TO SECTION 12.9, “WRAPPING/UNWRAPPING PRIVATE KEYS (RSA, DIFFIE-HELLMAN,
AND DSA)”.. 18
8.7 CHANGES TO SECTION 12.12.4, “RC2-CBC WITH PKCS PADDING” .. 20
8.8 CHANGES TO SECTION 12.16.4, “RC5-CBC WITH PKCS PADDING” .. 20
8.9 CHANGES TO SECTION 12.18.4, “GENERAL BLOCK CIPHER CBC WITH PKCS PADDING” 20

A. INTELLECTUAL PROPERTY CONSIDERATIONS.. 21

B. REFERENCES.. 21

C. ABOUT PKCS... 21

PKCS #11 V2.10 AMENDMENT 1: ECC 2

Copyright © 2000 RSA Security Inc.

1. Introduction

This document amends PKCS #11 v2.10 [1] to support elliptic curve cryptography as
described in the ANSI X9.62 [2] standard and the ANSI X9.63 [3] draft developed by the
ANSI X9F1 working group. This amendment generalizes the definition of public and
private key objects and the mechanism for the generation of elliptic curve key pair. This
amendment also expands the current definition of elliptic curve domain parameters to be
more consistent with ANSI X9.62 [2] and ANSI X9.63 [3]. This amendment adds new
EC based mechanisms

Version 2.01 of PKCS#11 [1] added the support for a variety of private keys to be
wrapped and unwrapped with a secret key, however this function was not supported for
elliptic curve private keys. This amendment adds the support for the wrapping and
unwrapping of elliptic curve private keys in general.

This amendment is written as revisions to PKCS #11 v2.10 [1]. Only the affected
sections are included.

Editor’s note: To ease the review of this last draft version of this amendment, changes to updated sections of PKCS#11
are highlighted in gray. Note that all editor’s notes and these highlights will be removed in the final version.

2. Changes to Section 3, "References"

[Update the reference as follows:]

ANSI X9.62 Accredited Standards Committee X9. Public Key Cryptography for the
Financial Services Industry: The Elliptic Curve Digital Signature
Algorithm (ECDSA). 1999.

 [Add the following new references:]

ANSI X9.63 Accredited Standards Committee X9. Public Key Cryptography for the
Financial Services Industry: Key Agreement and Key Transport Using
Elliptic Curve Cryptography. Working draft, October 10, 2000.

SEC 1 Standards for Efficient Cryptography Group (SECG). Standards for
Efficient Cryptography (SEC) 1: Elliptic Curve Cryptography. Version
1.0, September 20, 2000.

PKCS #11 V2.10 AMENDMENT 1: ECC 3

Copyright © 2000 RSA Security Inc.

3. Changes to Section 4, "Definitions"

[Add the following new definitions:]

 EC Elliptic Curve

 ECDH Elliptic Curve Diffie-Hellman.

 ECMQV Elliptic Curve Menezes-Qu-Vanstone

4. Changes to Section 5, "Symbols and abbreviations"

[Add the following prefix in Table 2:]

Prefix Description
CKD_ Key derivation function

5. Changes to Section 9, "General data types"

5.1 Changes to Section 9.4, "Object types"

[Add the following key type to the paragraph on CK_KEY_TYPE:]

#define CKK_EC 0x00000003

Editor’s note: The value for the CKK_EC key type is the same as the value for the CKK_ECDSA key type since
according to ANSI X9.62 [2] and ANSI X9.63 [3], elliptic curve private and public keys have the same syntax
regardless of their designated use.

[Add the following attribute type to the paragraph on CK_ATTRIBUTE_TYPE:]

#define CKA_EC_PARAMS 0x00000180

Editor’s note: The value for the CKA_EC_PARAMS attribute is the same as the value for the
CKA_ECDSA_PARAMS attribute since according to ANSI X9.62 [2] and ANSI X9.63 [3], elliptic curve domain
parameters have the same syntax.

5.2 Changes to Section 9.5, "Data types for mechanisms"

[Add the following mechanism types to the paragraph on CK_MECHANISM_TYPE:]

#define CKM_EC_KEY_PAIR_GEN 0x00001040
#define CKM_ECDH1_DERIVE 0x00001045
#define CKM_ECDH1_COFACTOR_DERIVE 0x00001046

PKCS #11 V2.10 AMENDMENT 1: ECC 4

Copyright © 2000 RSA Security Inc.

#define CKM_ECMQV_DERIVE 0x00001047

Editor’s note: The value for the CKM_EC_KEY_PAIR_GEN mechanism is the same as the value for the
CKM_ECDSA_KEY_PAIR_GEN mechanism since according to ANSI X9.62 [2] and ANSI X9.63 [3], the generation
of elliptic curve keys is the same regardless of their designated use. Other EC mechanisms could also be added once it
is determined which other one of the 21 schemes defined under ANSI X9.63 [3] should also be defined under Cryptoki,
especially the key transport schemes, since none are currently defined in this amendment.

[Add the following mechanism information flags to Table 12:]

Bit Flag Mask Meaning
CKF_EC_F_P 0x00100000 TRUE if the mechanism can be used

with EC domain parameters over Fp
CKF_EC_F_2M 0x00200000 TRUE if the mechanism can be used

with EC domain parameters over
F2m

CKF_EC_NAMEDCURVE 0x00400000 TRUE if the mechanism can be used
with EC domain parameters of the
choice namedCurve; FALSE if the
mechanism can only be used with
EC domain parameters of the choice
ecParameters

CKF_EC_COMPRESS 0x00800000 TRUE if the mechanism can be used
with elliptic curve point
compression

5.3 Changes to Section 9.6, "Function types"

[Add the following return value to the paragraph on CK_RV:]

#define CKR_KEY_PARAMS_INVALID 0x0000006B

6. Changes to Section 10, "Objects"

6.1 Changes to Section 10.8, "Public key objects"

[Replace the second sentence with the following:]

This version of Cryptoki recognizes the following types of public keys: RSA, DSA, EC
(also related to ECDSA), Diffie-Hellman, and KEA.

PKCS #11 V2.10 AMENDMENT 1: ECC 5

Copyright © 2000 RSA Security Inc.

6.2 Changes to Section 10.8.3, "ECDSA public key objects"

[Replace Section 10.8.3 with the following:]

10.8.3 Elliptic curve public key objects

EC (also related to ECDSA) public key objects (object class CKO_PUBLIC_KEY, key
type CKK_EC or CKK_ECDSA) hold EC public keys. See Section 12.3 for more
information about EC. The following table defines the EC public key object attributes, in
addition to the common attributes listed in Table 14, Table 18, Table 24, and Table 25:

Table 29, Elliptic Curve Public Key Object Attributes

Attribute Data type Meaning
CKA_EC_PARAMS1,3,6
(CKA_ECDSA_PARAMS)

Byte array DER-encoding of an ANSI X9.62
Parameters value

CKA_EC_POINT1,4,6 Byte array DER-encoding of ANSI X9.62
ECPoint value Q

The CKA_EC_PARAMS or CKA_ECDSA_PARAMS attribute value is known as the
“EC domain parameters” and is defined in ANSI X9.62 as a choice of three parameter
representation methods with the following syntax:

Parameters ::= CHOICE {
 ecParameters ECParameters,
 namedCurve CURVES.&id({CurveNames}),
 implicitlyCA NULL
}

This allows detailed specification of all required values using choice ecParameters, the
use of a namedCurve as an object identifier substitute for a particular set of elliptic
curve domain parameters, or implicitlyCA to indicate that the domain parameters are
explicitly defined elsewhere. The use of a namedCurve is recommended over the choice
ecParameters. The choice implicitlyCA must not be used in Cryptoki.

The following is a sample template for creating an EC (ECDSA) public key object:

CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_EC;
CK_UTF8CHAR label[] = “An EC public key object”;
CK_BYTE ecParams[] = {...};
CK_BYTE ecPoint[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},

PKCS #11 V2.10 AMENDMENT 1: ECC 6

Copyright © 2000 RSA Security Inc.

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_EC_PARAMS, ecParams, sizeof(ecParams)},
 {CKA_EC_POINT, ecPoint, sizeof(ecPoint)}
};

6.3 Changes to Section 10.9, "Private key objects"

[Replace the second sentence with the following:]

This version of Cryptoki recognizes the following types of private key: RSA, DSA, EC
(also related to ECDSA), Diffie-Hellman, and KEA.

6.4 Changes to Section 10.9.3, "ECDSA private key objects"

[Replace Section 10.9.3 with the following:]

10.9.3 Elliptic curve private key objects

EC (also related to ECDSA) private key objects (object class CKO_PRIVATE_KEY,
key type CKK_EC or CKK_ECDSA) hold EC private keys. See Section 12.3 for more
information about EC. The following table defines the EC private key object attributes,
in addition to the common attributes listed in Table 14, Table 18, Table 24, and Table 32:

Table 36, Elliptic Curve Private Key Object Attributes

Attribute Data type Meaning
CKA_EC_PARAMS1,4,6
(CKA_ECDSA_PARAMS)

Byte array DER-encoding of an ANSI X9.62
Parameters value

CKA_VALUE1,4,6,7 Big integer ANSI X9.62 private value d

The CKA_EC_PARAMS or CKA_ECDSA_PARAMS attribute value is known as the
“EC domain parameters” and is defined in ANSI X9.62 as a choice of three parameter
representation methods with the following syntax:

Parameters ::= CHOICE {
 ecParameters ECParameters,
 namedCurve CURVES.&id({CurveNames}),
 implicitlyCA NULL
}

This allows detailed specification of all required values using choice ecParameters, the
use of a namedCurve as an object identifier substitute for a particular set of elliptic

PKCS #11 V2.10 AMENDMENT 1: ECC 7

Copyright © 2000 RSA Security Inc.

curve domain parameters, or implicitlyCA to indicate that the domain parameters are
explicitly defined elsewhere. The use of a namedCurve is recommended over the choice
ecParameters. The choice implicitlyCA must not be used in Cryptoki.

Note that when generating an EC private key, the EC domain parameters are not
specified in the key’s template. This is because EC private keys are only generated as
part of an EC key pair, and the EC domain parameters for the pair are specified in the
template for the EC public key.

The following is a sample template for creating an EC (ECDSA) private key object:

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_EC;
CK_UTF8CHAR label[] = “An EC private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE ecParams[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_DERIVE, &true, sizeof(true)},
 {CKA_EC_PARAMS, ecParams, sizeof(ecParams)},
 {CKA_VALUE, value, sizeof(value)}
};

7. Changes to Section 11, "Functions"

7.1 Changes to Section 11.1.6, "All other Cryptoki function return values"

[Add the following new return value:]

• CKR_KEY_PARAMS_INVALID: Invalid or unsupported domain parameters were
supplied to the function. Which representation methods of domain parameters are
supported by a given mechanism can vary from token to token.

PKCS #11 V2.10 AMENDMENT 1: ECC 8

Copyright © 2000 RSA Security Inc.

7.2 Changes to Section 11.7, "Object management functions"

[Replace the return values for the C_CreateObject function with:]

Return values: CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_PARAMS_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN,
CKR_ARGUMENTS_BAD.

7.3 Changes to Section 11.14, "Key management functions"

[Replace the return values for the C_GenerateKeyPair function with:]

Return values: CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_PARAMS_INVALID, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN, CKR_ARGUMENTS_BAD.

[Replace the fourth bullet under the C_WrapKey function with:]

• To wrap an RSA, Diffie-Hellman, EC (also related to ECDSA) or DSA private key
with any secret key other than a SKIPJACK, BATON, or JUNIPER key.

[Replace the return values for the C_UnwrapKey function with:]

Return values: CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_PARAMS_INVALID, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,

PKCS #11 V2.10 AMENDMENT 1: ECC 9

Copyright © 2000 RSA Security Inc.

CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_UNWRAPPING_KEY_HANDLE_INVALID,
CKR_UNWRAPPING_KEY_SIZE_RANGE,
CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT,
CKR_USER_NOT_LOGGED_IN, CKR_WRAPPED_KEY_INVALID,
CKR_WRAPPED_KEY_LEN_RANGE, CKR_ARGUMENTS_BAD.

[Replace the return values for the C_DeriveKey function with:]

Return values: CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_HANDLE_INVALID, CKR_KEY_PARAMS_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN,
CKR_ARGUMENTS_BAD.

8. Changes to Section 12, "Mechanisms"

[Replace the line about CKM_ECDSA_KRY_PAIR_GEN in Table 55 with:]

 Functions

Mechanism

Encrypt
&

Decrypt

Sign
&

Verify

SR
&

VR1

Digest

Gen.
 Key/
Key
Pair

Wrap
&

Unwrap

Derive

CKM_EC_KEY_PAIR_GEN
(CKM_ECDSA_KEY_PAIR_GEN)

 ü

PKCS #11 V2.10 AMENDMENT 1: ECC 10

Copyright © 2000 RSA Security Inc.

[Add the following new mechanisms in Table 55:]

 Functions

Mechanism

Encrypt
&

Decrypt

Sign
&

Verify

SR
&

VR1

Digest

Gen.
 Key/
Key
Pair

Wrap
&

Unwrap

Derive

CKM_ECDH1_DERIVE ü

CKM_ECDH1_COFACTOR_DERIVE ü

CKM_ECMQV_DERIVE ü

Editor’s note: Other EC mechanisms could also be added once it is determined which other one of the 21 schemes
defined under ANSI X9.63 [3] should also be defined under Cryptoki, especially the key transport schemes, since none
are currently defined in this amendment.

8.1 Changes to Section 12.3, “About ECDSA”

[Replace Section 12.3 with the following:]

12.3 About elliptic curve

The EC cryptosystem (also related to ECDSA) in this document is the one described in
the ANSI X9.62 standard and the ANSI X9.63 draft developed by the ANSI X9F1
working group.

In these standards, there are two different varieties of EC defined:

1. EC using a field with an odd prime number of elements (i.e. the finite field Fp).

2. EC using a field of characteristic two (i.e. the finite field F2m).

An EC key in Cryptoki contains information about which variety of EC it is suited for. It
is preferable that a Cryptoki library, which can perform EC mechanisms, be capable of
performing operations with the two varieties of EC, however this is not required. The
CK_MECHANISM_INFO structure CKF_EC_F_P flag identifies a Cryptoki library
supporting EC keys over Fp whereas the CKF_EC_F_2M flag identifies a Cryptoki
library supporting EC keys over F2m.

In these specifications there are also three representation methods to define the domain
parameters for an EC key. Only the ecParameters and the namedCurve choices are
supported in Cryptoki. The CK_MECHANISM_INFO structure
CKF_EC_NAMEDCURVE flag identifies a Cryptoki library supporting the
namedCurve choice.

In these specifications, an EC public key (i.e. EC point Q) or the base point G when the
ecParameters choice is used can be represented as an octet string of the compressed
form or the uncompressed form. The CK_MECHANISM_INFO structure
CKF_EC_COMPRESS flag identifies a Cryptoki library supporting the compress form.

PKCS #11 V2.10 AMENDMENT 1: ECC 11

Copyright © 2000 RSA Security Inc.

If an attempt to create, generate, derive, or unwrap an EC key of an unsupported variety
(or of an unsupported size of a supported variety) is made, that attempt should fail with
the error code CKR_TEMPLATE_INCONSISTENT. If an attempt to create, generate,
derive, or unwrap an EC key with invalid or of an unsupported representation of domain
parameters is made, that attempt should fail with the error code
CKR_KEY_PARAMS_INVALID. If an attempt to create, generate, derive, or unwrap
an EC key of an unsupported form is made, that attempt should fail with the error code
CKR_TEMPLATE_INCONSISTENT.

8.2 Changes to Section 12.4.1, “ECDSA key pair generation”

[Replace Section 12.4.1 with the following:]

12.4.1 Elliptic curve key pair generation

The EC (also related to ECDSA) key pair generation mechanism, denoted
CKM_EC_KEY_PAIR_GEN or CKM_ECDSA_KEY_PAIR_GEN, is a key pair
generation mechanism for EC.

This mechanism does not have a parameter.

The mechanism generates EC public/private key pairs with particular EC domain
parameters, as specified in the CKA_EC_PARAMS or CKA_ECDSA_PARAMS
attribute of the template for the public key. Note that this version of Cryptoki does not
include a mechanism for generating these EC domain parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and
CKA_EC_POINT attributes to the new public key and the CKA_CLASS,
CKA_KEY_TYPE, CKA_EC_PARAMS or CKA_ECDSA_PARAMS and
CKA_CKA_VALUE attributes to the new private key. Other attributes supported by the
EC public and private key types (specifically, the flags indicating which functions the
keys support) may also be specified in the templates for the keys, or else are assigned
default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the minimum and maximum supported
number of bits in the field sizes, respectively. For example, if a Cryptoki library supports
only ECDSA using a field of characteristic 2 which has between 2200 and 2300 elements,
then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the
number 2200 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2300 is a 301-bit number).

PKCS #11 V2.10 AMENDMENT 1: ECC 12

Copyright © 2000 RSA Security Inc.

8.3 Changes to Section 12.4.2, “ECDSA without hashing”

[Replace Section 12.4.2 with the following:]

12.4.2 ECDSA without hashing

The ECDSA without hashing mechanism, denoted CKM_ECDSA, is a mechanism for
single-part signatures and verification for ECDSA. (This mechanism corresponds only to
the part of ECDSA that processes the 20-byte hash value; it does not compute the hash
value.)

For the purposes of this mechanism, an ECDSA signature is an octet string of length two
times nLen, where nLen is the length in octets of the base point order n, and corresponds
to the concatenation of the ECDSA values r and s, each represented as an octet string of
length nLen most-significant byte first.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 66, ECDSA: Key And Data Length

Function Key type Input
length

Output
length

C_Sign1 ECDSA private
key

20 2nLen

C_Verify1 ECDSA public key 20, 2nLen 2 N/A
1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the minimum and maximum supported
number of bits in the field sizes, respectively. For example, if a Cryptoki library supports
only ECDSA using a field of characteristic 2 which has between 2200 and 2300 elements
(inclusive), then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary
notation, the number 2200 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-
bit number. Similarly, 2300 is a 301-bit number).

PKCS #11 V2.10 AMENDMENT 1: ECC 13

Copyright © 2000 RSA Security Inc.

8.4 Changes to Section 12.4.3, “ECDSA with SHA-1”

[Replace Section 12.4.3 with the following:]

12.4.3 ECDSA with SHA-1

The ECDSA with SHA-1 mechanism, denoted CKM_ECDSA_SHA1, is a mechanism
for single- and multiple-part signatures and verification for ECDSA. This mechanism
computes the entire ECDSA specification, including the hashing with SHA-1.

For the purposes of this mechanism, an ECDSA signature is an octet string of length two
times nLen, where nLen is the length in octets of the base point order n, and corresponds
to the concatenation of the ECDSA values r and s, each represented as an octet string of
length nLen most-significant byte first.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 67, ECDSA with SHA-1: Key And Data Length

Function Key type Input length Output
length

C_Sign ECDSA private key any 2nLen
C_Verify ECDSA public key any, 2nLen 2 N/A

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the minimum and maximum supported
number of bits in the field sizes, respectively. For example, if a Cryptoki library supports
only ECDSA using a field of characteristic 2 which has between 2200 and 2300 elements,
then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the
number 2200 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2300 is a 301-bit number).

8.5 New Sections 12.4.5 through 12.4.8

[Insert new sections 12.4.5 through 12.4.8:]

12.4.5 EC mechanism parameters

♦ CK_EC_KDF_TYPE, CK_EC_KDF_TYPE_PTR

CK_EC_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to
derive keying data from a shared secret. The key derivation function will be used by the
EC key agreement schemes. It is defined as follows:

PKCS #11 V2.10 AMENDMENT 1: ECC 14

Copyright © 2000 RSA Security Inc.

typedef CK_ULONG CK_EC_KDF_TYPE;

The following table lists the defined functions.

Table ??, EC: Key Derivation Functions

Source Identifier Value
CKD_NULL 0x00000001
CKD_ SHA1_KDF 0x00000002

The key derivation function CKD_NULL produces a raw shared secret value without
applying any key derivation function whereas the key derivation function
CKD_SHA1_KDF, which is based on SHA-1, derives keying data from the shared secret
value as defined in the ANSI X9.63 draft.

CK_EC_KDF_TYPE_PTR is a pointer to a CK_EC_KDF_TYPE.

♦ CK_ECDH1_DERIVE_PARAMS, CK_ECDH1_DERIVE_PARAMS_PTR

CK_ECDH1_DERIVE_PARAMS is a structure that provides the parameters for the
CKM_ECDH1_DERIVE and CKM_ECDH1_COFACTOR_DERIVE key derivation
mechanisms, where each party contributes one key pair. The structure is defined as
follows:

typedef struct CK_ECDH1_DERIVE_PARAMS {
 CK_EC_KDF_TYPE kdf;
 CK_ULONG ulSharedDataLen;
 CK_BYTE_PTR pSharedData;
 CK_ULONG ulPublicDataLen;
 CK_BYTE_PTR pPublicData;
} CK_ECDH1_DERIVE_PARAMS;

The fields of the structure have the following meanings:

 kdf key derivation function used on the shared secret value

 ulSharedDataLen the length in bytes of the shared info

 pSharedData some data shared between the two parties

 ulPublicDataLen the length in bytes of the other party’s EC public key

 pPublicData pointer to other party’s EC public key value

With the key derivation function CKD_NULL, pSharedData must be NULL and
ulSharedDataLen must be zero. With the key derivation function CKD_SHA1_KDF, an
optional pSharedData may be supplied, which consists of some data shared by the two

PKCS #11 V2.10 AMENDMENT 1: ECC 15

Copyright © 2000 RSA Security Inc.

parties intending to share the shared secret. Otherwise, pSharedData must be NULL and
ulSharedDataLen must be zero.

CK_ECDH1_DERIVE_PARAMS_PTR is a pointer to a
CK_ECDH1_DERIVE_PARAMS.

♦ CK_ECDH2_DERIVE_PARAMS, CK_ECDH2_DERIVE_PARAMS_PTR

CK_ECDH2_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_ECMQV_DERIVE key derivation mechanism, where each party contributes two
key pairs. The structure is defined as follows:

typedef struct CK_ECDH2_DERIVE_PARAMS {
 CK_EC_KDF_TYPE kdf;
 CK_ULONG ulSharedDataLen;
 CK_BYTE_PTR pSharedData;
 CK_ULONG ulPublicDataLen;
 CK_BYTE_PTR pPublicData;
 CK_ULONG ulPrivateDataLen;
 CK_OBJECT_HANDLE hPrivateData;
 CK_ULONG ulPublicDataLen2;
 CK_BYTE_PTR pPublicData2;
} CK_ECDH2_DERIVE_PARAMS;

The fields of the structure have the following meanings:

 kdf key derivation function used on the shared secret value

 ulSharedDataLen the length in bytes of the shared info

 pSharedData some data shared between the two parties

 ulPublicDataLen the length in bytes of the other party’s first EC public
key

 pPublicData pointer to other party’s first EC public key value

 ulPrivateDataLen the length in bytes of the second EC private key

 hPrivateData key handle for second EC private key value

 ulPublicDataLen2 the length in bytes of the other party’s second EC
public key

 pPublicData2 pointer to other party’s second EC public key value

With the key derivation function CKD_NULL, pSharedData must be NULL and
ulSharedDataLen must be zero. With the key derivation function CKD_SHA1_KDF, an

PKCS #11 V2.10 AMENDMENT 1: ECC 16

Copyright © 2000 RSA Security Inc.

optional pSharedData may be supplied, which consists of some data shared by the two
parties intending to share the shared secret. Otherwise, pSharedData must be NULL and
ulSharedDataLen must be zero.

CK_ECDH2_DERIVE_PARAMS_PTR is a pointer to a
CK_ECDH2_DERIVE_PARAMS.

12.4.6 Elliptic curve Diffie-Hellman key derivation

The elliptic curve Diffie-Hellman (ECDH) key derivation mechanism, denoted
CKM_ECDH1_DERIVE, is a mechanism for key derivation based on the Diffie-
Hellman version of the elliptic curve key agreement scheme, as defined in the ANSI
X9.63 draft, where each party contributes one key pair all using the same EC domain
parameters.

It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

The derived key inherits the values of the CKA_SENSITIVE,
CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes from the base key. The values of the
CKA_SENSITIVE and CKA_EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA_ALWAYS_SENSITIVE attribute set to TRUE, then the template may not specify
that the derived key should have the CKA_SENSITIVE attribute set to FALSE;
similarly, if the base key has the CKA_NEVER_EXTRACTABLE attribute set to
TRUE, then the template may not specify that the derived key should have the
CKA_EXTRACTABLE attribute set to TRUE.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the minimum and maximum supported
number of bits in the field sizes, respectively. For example, if a Cryptoki library supports
only EC using a field of characteristic 2 which has between 2200 and 2300 elements, then
ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the
number 2200 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2300 is a 301-bit number).

12.4.7 Elliptic curve Diffie-Hellman with cofactor key derivation

The elliptic curve Diffie-Hellman (ECDH) with cofactor key derivation mechanism,
denoted CKM_ECDH1_COFACTOR_DERIVE, is a mechanism for key derivation
based on the cofactor Diffie-Hellman version of the elliptic curve key agreement scheme,

PKCS #11 V2.10 AMENDMENT 1: ECC 17

Copyright © 2000 RSA Security Inc.

as defined in the ANSI X9.63 draft, where each party contributes one key pair all using
the same EC domain parameters. Cofactor multiplication is computationally efficient and
helps to prevent security problems like small group attacks.

It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

The derived key inherits the values of the CKA_SENSITIVE,
CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes from the base key. The values of the
CKA_SENSITIVE and CKA_EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA_ALWAYS_SENSITIVE attribute set to TRUE, then the template may not specify
that the derived key should have the CKA_SENSITIVE attribute set to FALSE;
similarly, if the base key has the CKA_NEVER_EXTRACTABLE attribute set to
TRUE, then the template may not specify that the derived key should have the
CKA_EXTRACTABLE attribute set to TRUE.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the minimum and maximum supported
number of bits in the field sizes, respectively. For example, if a Cryptoki library supports
only EC using a field of characteristic 2 which has between 2200 and 2300 elements, then
ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the
number 2200 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2300 is a 301-bit number).

12.4.8 Elliptic curve Menezes-Qu-Vanstone key derivation

The elliptic curve Menezes-Qu-Vanstone (ECMQV) key derivation mechanism, denoted
CKM_ECMQV_DERIVE, is a mechanism for key derivation based the MQV version
of the elliptic curve key agreement scheme, as defined in the ANSI X9.63 draft, where
each party contributes two key pairs all using the same EC domain parameters.

It has a parameter, a CK_ECDH2_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

PKCS #11 V2.10 AMENDMENT 1: ECC 18

Copyright © 2000 RSA Security Inc.

The derived key inherits the values of the CKA_SENSITIVE,
CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes from the base key. The values of the
CKA_SENSITIVE and CKA_EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA_ALWAYS_SENSITIVE attribute set to TRUE, then the template may not specify
that the derived key should have the CKA_SENSITIVE attribute set to FALSE;
similarly, if the base key has the CKA_NEVER_EXTRACTABLE attribute set to
TRUE, then the template may not specify that the derived key should have the
CKA_EXTRACTABLE attribute set to TRUE.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the minimum and maximum supported
number of bits in the field sizes, respectively. For example, if a Cryptoki library supports
only EC using a field of characteristic 2 which has between 2200 and 2300 elements, then
ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the
number 2200 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2300 is a 301-bit number).

Editor’s note: Other EC mechanisms could also be added once it is determined which other one of the 21 schemes
defined under ANSI X9.63 [3] should also be defined under Cryptoki, especially the key transport schemes, since none
are currently defined in this amendment.

8.6 Changes to Section 12.9, “Wrapping/unwrapping private keys (RSA, Diffie-
Hellman, and DSA)”

[Replace the first few paragraphs of Section 12.9 until the bullets with:]

12.9 Wrapping/unwrapping private keys

Cryptoki Versions 2.01 and up allow the use of secret keys for wrapping and unwrapping
RSA private keys, Diffie-Hellman private keys, EC (also related to ECDSA) private keys
and DSA private keys. For wrapping, a private key is BER-encoded according to PKCS
#8’s PrivateKeyInfo ASN.1 type. PKCS #8 requires an algorithm identifier for the type
of the secret key. The object identifiers for the required algorithm identifiers are as
follows:

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

dhKeyAgreement OBJECT IDENTIFIER ::= { pkcs-3 1 }

id-ecPublicKey OBJECT IDENTIFIER ::= { iso(1) member-

body(2) us(840) ansi-x9-62(10045) publicKeyType(2) 1 }

id-dsa OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 1 }

PKCS #11 V2.10 AMENDMENT 1: ECC 19

Copyright © 2000 RSA Security Inc.

where

pkcs-1 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) 1

}

pkcs-3 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) 3

}

These parameters for the algorithm identifiers have the following types, respectively:

NULL

DHParameter ::= SEQUENCE {
 prime INTEGER, -- p
 base INTEGER, -- g
 privateValueLength INTEGER OPTIONAL
}

Parameters ::= CHOICE {
 ecParameters ECParameters,
 namedCurve CURVES.&id({CurveNames}),
 implicitlyCA NULL
}

Dss-Parms ::= SEQUENCE {
 p INTEGER,
 q INTEGER,
 g INTEGER
}

For the EC domain parameters, the use of namedCurve is recommended over the choice
ecParameters. The choice implicitlyCA must not be used in Cryptoki.

Within the PrivateKeyInfo type:

• RSA private keys are BER-encoded according to PKCS #1’s RSAPrivateKey ASN.1
type. This type requires values to be present for all the attributes specific to
Cryptoki’s RSA private key objects. In other words, if a Cryptoki library does not
have values for an RSA private key’s CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1,
CKA_PRIME_2, CKA_EXPONENT_1, CKA_EXPONENT2, and
CKA_COEFFICIENT values, it cannot create an RSAPrivateKey BER-encoding of
the key, and so it cannot prepare it for wrapping.

• Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.

PKCS #11 V2.10 AMENDMENT 1: ECC 20

Copyright © 2000 RSA Security Inc.

• EC (also related with ECDSA) private keys are BER-encoded according to SECG
SEC 1 ECPrivateKey ASN.1 type:

ECPrivateKey ::= SEQUENCE {
 Version INTEGER { ecPrivkeyVer1(1) }

(ecPrivkeyVer1),
 privateKey OCTET STRING,
 parameters [0] Parameters OPTIONAL,
 publicKey [1] BIT STRING OPTIONAL
}

Since the EC domain parameters are placed in the PKCS #8’s privateKeyAlgorithm
field, the optional parameters field in an ECPrivateKey must be omitted. The
optional publicKey field could be omitted, however it may be useful to send the
public key along with the private key, especially in mechanisms that involve
calculations with the public key.

• DSA private keys are represented as BER-encoded ASN.1 type INTEGER.

8.7 Changes to Section 12.12.4, “RC2-CBC with PKCS padding”

 [Replace the first sentence of the fourth paragraph with:]

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see
Section 12.9 for details).

8.8 Changes to Section 12.16.4, “RC5-CBC with PKCS padding”

[Replace the first sentence of the fourth paragraph with:]

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see
Section 12.9 for details).

8.9 Changes to Section 12.18.4, “General block cipher CBC with PKCS
padding”

[Replace the first sentence of the fourth paragraph with:]

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see
Section 12.9 for details).

PKCS #11 V2.10 AMENDMENT 1: ECC 21

Copyright © 2000 RSA Security Inc.

A. Intellectual property considerations

RSA Security makes no patent claims on the general constructions described in this
document, although specific underlying techniques may be covered.

License to copy this document is granted provided that it is identified as “RSA Security
Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document.

RSA Security Inc. makes no other representations regarding intellectual property claims
by other parties. Such determination is the responsibility of the user.

B. References

[1] RSA Laboratories. PKCS #11: Cryptographic Token Interface Standard.
Version 2.10, December 1999.

[2] ANSI X9.62. Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm
(ECDSA). 1999.

[3] ANSI X9.63. Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: Key Agreement and Key Transport Using Elliptic
Curve Cryptography. Working draft, October 10, 2000

C. About PKCS

The Public-Key Cryptography Standards are specifications produced by RSA
Laboratories in cooperation with secure systems developers worldwide for the purpose of
accelerating the deployment of public-key cryptography. First published in 1991 as a
result of meetings with a small group of early adopters of public-key technology, the
PKCS documents have become widely referenced and implemented. Contributions from
the PKCS series have become part of many formal and de facto standards, including
ANSI X9 documents, PKIX, SET, S/MIME, and SSL.

Further development of PKCS occurs through mailing list discussions and occasional
workshops, and suggestions for improvement are welcome. For more information,
contact:

PKCS Editor
RSA Laboratories
20 Crosby Drive
Bedford, MA 01730 USA
pkcs-editor@rsasecurity.com
http://www.rsasecurity.com/rsalabs/pkcs

