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1. Introduction

This document provides recommendations for the implementation of public-key
cryptography based on the RSA algorithm [25], covering the following aspects:

• cryptographic primitives

• encryption schemes

• signature schemes with appendix

• ASN.1 syntax for representing keys and for identifying the schemes
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The recommendations are intended for general application within computer and
communications systems, and as such include a fair amount of flexibility. It is expected
that application standards based on these specifications may include additional constraints.
The recommendations are intended to be compatible with draft standards currently being
developed by the ANSI X9F1 [1] and IEEE P1363 working groups [19].

This document supersedes PKCS #1 version 2.0 [27] but includes compatible techniques.

Editor’s note. It is expected that subsequent versions of PKCS #1 may cover other aspects of the RSA
algorithm such as key size, key generation, key validation, and signature schemes with message recovery.

1.1 Overview

The organization of this document is as follows:

• Section 1 is an introduction.

• Section 2 defines some notation used in this document.

• Section 3 defines the RSA public and private key types.

• Sections 4 and 5 define several primitives, or basic mathematical operations. Data
conversion primitives are in Section 4, and cryptographic primitives (encryption-
decryption, signature-verification) are in Section 5.

• Sections 6, 7 and 8 deal with the encryption and signature schemes in this document.
Section 6 gives an overview. Along with the methods found in PKCS #1 v1.5, Section
7 defines an OAEP-based [2] encryption scheme and Section 8 defines a PSS-based
[3][4] signature scheme with appendix.

• Section 09 defines the encoding methods for the encryption and signature schemes in
Sections 7 and 8.

• Appendix A defines the ASN.1 syntax for the keys defined in Section 3 and the
schemes in Sections 7 and 8.

• Appendix B defines the hash functions and the mask generation function used in this
document, including ASN.1 syntax for the techniques.

• Appendix C gives an ASN.1 module.

• Appendices D, E, F and G cover intellectual property issues, outline the revision
history of PKCS #1, give references to other publications and standards, and provide
general information about the Public-Key Cryptography Standards.



PKCS #1 V2.1: RSA CRYPTOGRAPHY STANDARD 4

Copyright © 1999 RSA Security Inc.

2. Notation

(n, e) RSA public key

c ciphertext representative, an integer between 0 and n–1

C ciphertext, an octet string

d private exponent

dP p’s exponent, a positive integer such that:

e · dP ≡ 1 (mod (p–1))

dQ q’s exponent, a positive integer such that:

e · dQ ≡ 1 (mod (q–1))

e public exponent

EM encoded message, an octet string

emLen (intended) length in octets of an encoded message EM

GCD ( . , .) greatest common divisor of two nonnegative integers

H hash value, an output of Hash

Hash hash function

hLen output length in octets of hash function Hash

k length in octets of the modulus

K RSA private key

l intended length of octet string

LCM ( . , .) least common multiple of two nonnegative integers

m message representative, an integer between 0 and n–1

M message, an octet string

mask mask, an octet string

mLen length in octets of a message M
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MGF mask generation function

mLen length in octets of a message

n modulus

P encoding parameters, an octet string

p, q prime factors of the modulus

qInv CRT coefficient, a positive integer less than p such that:

q · qInv ≡ 1 (mod p)

s signature representative, an integer between 0 and n–1

S signature, an octet string

salt salt value, an octet string

x a nonnegative integer

X an octet string corresponding to x

xor bitwise exclusive-or of two octet strings

Ζ seed from which mask is generated, an octet string

λ(n) LCM (p–1, q–1), where n = p ⋅ q

|| concatenation operator

|| . || octet length operator

3. Key types

Two key types are employed in the primitives and schemes defined in this document: RSA
public key and RSA private key. Together, an RSA public key and an RSA private key
form an RSA key pair.

3.1 RSA public key

For the purposes of this document, an RSA public key consists of two components:

— n, the modulus, a nonnegative integer

— e, the public exponent, a nonnegative integer
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In a valid RSA public key, the modulus n is a product of two odd primes p and q, and the
public exponent e is an integer between 3 and n–1 satisfying GCD (e, λ(n)) = 1, where
λ(n) = LCM (p–1,q–1).

A recommended syntax for interchanging RSA public keys between implementations is
given in Appendix A.1.1; an implementation’s internal representation may differ.

3.2 RSA private key

For the purposes of this document, an RSA private key may have either of two
representations.

1. The first representation consists of the pair (n, d), where the components have the
following meanings:

— n, the modulus, a nonnegative integer

— d, the private exponent, a nonnegative integer

2. The second representation consists of a quintuple (p, q, dP, dQ, qInv), where the
components have the following meanings:

— p, the first factor, a nonnegative integer

— q, the second factor, a nonnegative integer

— dP, the first factor’s exponent, a nonnegative integer

— dQ, the second factor’s exponent, a nonnegative integer

— qInv, the CRT coefficient, a nonnegative integer

In a valid RSA private key with the first representation, the modulus n is the same as in the
corresponding public key and is the product of two odd primes p and q, and the private
exponent d is a positive integer less than n satisfying

e · d ≡ 1 (mod λ(n))

where e is the corresponding public exponent and λ(n) is as defined above.

In a valid RSA private key with the second representation, the two factors p and q are the
prime factors of the modulus n, the exponents dP and dQ are positive integers less than p
and q respectively satisfying

e · dP ≡ 1 (mod (p–1))
e · dQ ≡ 1 (mod (q–1)),
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and the CRT coefficient qInv is a positive integer less than p satisfying

q · qInv ≡ 1 (mod p).

A recommended syntax for interchanging RSA private keys between implementations,
which includes components from both representations, is given in Appendix A.1.2; an
implementation’s internal representation may differ.

4. Data conversion primitives

Two data conversion primitives are employed in the schemes defined in this document:

• I2OSP – Integer-to-Octet-String primitive

• OS2IP – Octet-String-to-Integer primitive

For the purposes of this document, and consistent with ASN.1 syntax, an octet string is an
ordered sequence of octets (eight-bit bytes). The sequence is indexed from first
(conventionally, leftmost) to last (rightmost). For purposes of conversion to and from
integers, the first octet is considered the most significant in the following conversion
primitives

4.1 I2OSP

I2OSP converts a nonnegative integer to an octet string of a specified length.

I2OSP (x, l)

Input: x nonnegative integer to be converted

l intended length of the resulting octet string

Output: X corresponding octet string of length l

Errors: “integer too large”

Steps:

1. If x ≥ 256l, output “integer too large” and stop.

2. Write the integer x in its unique l-digit representation base 256:

x = xl–1 256 l–1 + xl–2 256 l–2 + … + x1 256 + x0

where 0 ≤ xi < 256 (note that one or more leading digits will be zero if x < 256 l–1).
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3. Let the octet Xi have the value xl–i for 1 ≤ i ≤ l. Output the octet string

X = X1 X2 … Xl.

4.2 OS2IP

OS2IP converts an octet string to a nonnegative integer.

OS2IP (X)

Input: X octet string to be converted

Output: x corresponding nonnegative integer

Steps:

1. Let X1 X2 … Xl be the octets of X from first to last, and let xl–i have value Xi for 1
≤ i ≤ l.

2. Let x = xl–1 256 l–1 + xl–2 256 l–2 + … + x1 256 + x0.

3. Output x.

5. Cryptographic primitives

Cryptographic primitives are basic mathematical operations on which cryptographic
schemes can be built. They are intended for implementation in hardware or as software
modules, and are not intended to provide security apart from a scheme.

Four types of primitive are specified in this document, organized in pairs: encryption and
decryption; and signature and verification.

The specifications of the primitives assume that certain conditions are met by the inputs, in
particular that public and private keys are valid.

5.1 Encryption and decryption primitives

An encryption primitive produces a ciphertext representative from a message
representative under the control of a public key, and a decryption primitive recovers the
message representative from the ciphertext representative under the control of the
corresponding private key.

One pair of encryption and decryption primitives is employed in the encryption schemes
defined in this document and is specified here: RSAEP/RSADP. RSAEP and RSADP
involve the same mathematical operation, with different keys as input.
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The primitives defined here are the same as in the IEEE P1363 draft [19] and are
compatible with PKCS #1 v1.5.

The main mathematical operation in each primitive is exponentiation.

5.1.1 RSAEP

RSAEP ((n, e), m)

Input: (n, e) RSA public key

m message representative, an integer between 0 and n–1

Output: c ciphertext representative, an integer between 0 and n–1

Errors: “message representative out of range”

Assumptions:public key (n, e) is valid

Steps:

1. If the message representative m is not between 0 and n–1, output “message
representative out of range” and stop.

2. Let c = me mod n.

3. Output c.

5.1.2 RSADP

RSADP (K, c)

Input: K RSA private key, where K has one of the following forms:

— a pair (n, d)

— a quintuple (p, q, dP, dQ, qInv)

c ciphertext representative, an integer between 0 and n–1

Output: m message representative, an integer between 0 and n–1

Errors: “ciphertext representative out of range”

Assumptions: private key K is valid

Steps:
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1. If the ciphertext representative c is not between 0 and n–1, output “ciphertext
representative out of range” and stop.

2. If the first form (n, d) of K is used:

2.1 Let m = cd mod n.

Else, if the second form (p, q, dP, dQ, qInv) of K is used:

2.2 Let m1 = cdP mod p.

2.3 Let m2 = cdQ mod q.

2.4 Let h = qInv (m1 – m2) mod p.

2.5 Let m = m2 + h q.

3. Output m.

5.2 Signature and verification primitives

A signature primitive produces a signature representative from a message representative
under the control of a private key, and a verification primitive recovers the message
representative from the signature representative under the control of the corresponding
public key. One pair of signature and verification primitives is employed in the signature
schemes defined in this document and is specified here: RSASP1/RSAVP1.

The primitives defined here are the same as in the IEEE P1363 draft and are compatible
with PKCS #1 v1.5.

The main mathematical operation in each primitive is exponentiation, as in the encryption
and decryption primitives of Section 5.1. RSASP1 and RSAVP1 are the same as RSADP
and RSAEP except for the names of their input and output arguments; they are
distinguished as they are intended for different purposes.

5.2.1 RSASP1

RSASP1 (K, m)

Input: K RSA private key, where K has one of the following forms:

— a pair (n, d)

— a quintuple (p, q, dP, dQ, qInv)

m message representative, an integer between 0 and n–1
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Output: s signature representative, an integer between 0 and n–1

Errors: “message representative out of range”

Assumptions: private key K is valid

Steps:

1. If the message representative m is not between 0 and n–1, output “message
representative out of range” and stop.

2. If the first form (n, d) of K is used:

2.1 Let s = md mod n.

Else, if the second form (p, q, dP, dQ, qInv) of K is used:

2.2 Let s1 = mdP mod p.

2.3 Let s2 = mdQ mod q.

2.4 Let h = qInv (s1–s2 ) mod p.

2.5 Let s = s2 + h q.

3. Output s.

5.2.2 RSAVP1

RSAVP1 ((n, e), s)

Input: (n, e) RSA public key

s signature representative, an integer between 0 and n–1

Output: m message representative, an integer between 0 and n–1

Errors: “signature representative out of range”

Assumptions:public key (n, e) is valid

Steps:

1. If the signature representative s is not between 0 and n–1, output “signature
representative out of range” and stop.

2. Let m = se mod n.
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3. Output m.

6. Overview of schemes

A scheme combines cryptographic primitives and other techniques to achieve a particular
security goal. Two types of scheme are specified in this document: encryption schemes
and signature schemes with appendix.

The schemes specified in this document are limited in scope in that their operations consist
only of steps to process data with a key, and do not include steps for obtaining or
validating the key. Thus, in addition to the scheme operations, an application will typically
include key management operations by which parties may select public and private keys
for a scheme operation. The specific additional operations and other details are outside the
scope of this document.

As was the case for the cryptographic primitives (Section 5), the specifications of scheme
operations assume that certain conditions are met by the inputs, in particular that public
and private keys are valid. The behavior of an implementation is thus unspecified when a
key is invalid. The impact of such unspecified behavior depends on the application.
Possible means of addressing key validation include explicit key validation by the
application; key validation within the public-key infrastructure; and assignment of liability
for operations performed with an invalid key to the party who generated the key.

A generally good cryptographic practice is to employ a given key pair in only one scheme.
This avoids the risk that a vulnerability in one scheme may compromise the security of the
other, and may be essential to maintain provable security. As an example, suppose a key
pair is employed in both RSAES-OAEP (Section 7.1) and RSAES-PKCS1-v1_5 (Section
7.2). Although RSAES-OAEP by itself would resist attack, an opponent could exploit a
vulnerability in the implementation of RSAES-PKCS1-v1_5 to recover messages
encrypted with either scheme. As another example, suppose a key pair is employed in both
RSASSA-PKCS1-v1_5 (Section 8.1) and RSASSA-PSS (Section 8.2). Then the security
proof for RSASSA-PSS would no longer be sufficient since the proof does not account
for the possibility the signatures might be generated with a second scheme. No
vulnerability is apparent in this case but the proof of security is lost. Similar considerations
may apply if a key pair is employed in one of the schemes defined here and a variant
defined elsewhere.

There may be situations in which only one key pair is available and it needs to be
employed in multiple schemes, e.g., an encryption and a signature scheme. In such a case,
additional security evaluation is necessary. RSAES-OAEP and RSASSA-PSS are
designed in a way that prevents an opponent from exploiting interactions between the
schemes, so would be appropriate for such a situation. RSAES-PKCS1-v1_5 and
RSASSA-PKCS1-v1_5 have traditionally been employed together (indeed, this is the
model introduced by PKCS #1 v1.5), without any known bad interactions. But in general,
it is prudent to limit a key pair to a single scheme and purpose.
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7. Encryption schemes

An encryption scheme consists of an encryption operation and a decryption operation,
where the encryption operation produces a ciphertext from a message with a recipient’s
public key, and the decryption operation recovers the message from the ciphertext with
the recipient’s corresponding private key.

An encryption scheme can be employed in a variety of applications. A typical application is
a key establishment protocol, where the message contains key material to be delivered
confidentially from one party to another. For instance, PKCS #7 [28] employs such a
protocol to deliver a content-encryption key from a sender to a recipient; the encryption
schemes defined here would be suitable key-encryption algorithms in that context.

Two encryption schemes are specified in this document: RSAES-OAEP and RSAES-
PKCS1-v1_5. RSAES-OAEP is recommended for new applications; RSAES-PKCS1-
v1_5 is included only for compatibility with existing applications, and is not recommended
for new applications.

The encryption schemes given here follow a general model similar to that employed in the
IEEE P1363 draft, by combining encryption and decryption primitives with an encoding
method for encryption. The encryption operations apply a message encoding operation to
a message to produce an encoded message, which is then converted to an integer message
representative. An encryption primitive is applied to the message representative to
produce the ciphertext. Reversing this, the decryption operations apply a decryption
primitive to the ciphertext to recover a message representative, which is then converted to
an octet string encoded message. A message decoding operation is applied to the encoded
message to recover the message and verify the correctness of the decryption.

7.1 RSAES-OAEP

RSAES-OAEP combines the RSAEP and RSADP primitives (Sections 5.1.1 and 5.1.2)
with the EME-OAEP encoding method (Section 9.1.1) EME-OAEP is based on the
method found in [2]. It is compatible with the IFES scheme defined in the IEEE P1363
draft where the encryption and decryption primitives are IFEP-RSA and IFDP-RSA and
the message encoding method is EME-OAEP. RSAES-OAEP can operate on messages of
length up to k–2–2hLen octets, where hLen is the length of the hash function output for
EME-OAEP and k is the length in octets of the recipient’s RSA modulus.

Assuming that the hash function in EME-OAEP has appropriate properties, and the key
size is sufficiently large, RSAEP-OAEP provides “plaintext-aware encryption,” meaning
that it is computationally infeasible to obtain full or partial information about a message
from a ciphertext, and computationally infeasible to generate a valid ciphertext without
knowing the corresponding message. Therefore, a chosen ciphertext attack is ineffective
against a plaintext-aware encryption scheme such as RSAES-OAEP. We briefly note that
to receive the full security benefit of RSAES-OAEP, it should not be used in a protocol
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involving RSAES-PKCS1-v1_5. It is possible that in a protocol in which both encryption
schemes are present, an adaptive chosen ciphertext attack such as [5] would be useful.

Both the encryption and the decryption operations of RSAES-OAEP take the value of the
parameter string P as input. In this version of PKCS #1, P is an octet string that is
specified explicitly. See Appendix A.2.1 for the relevant ASN.1 syntax.

7.1.1 Encryption operation

RSAES-OAEP-ENCRYPT ((n, e), M, P)

Input: (n, e) recipient’s RSA public key

M message to be encrypted, an octet string of length at most k–2–
2hLen, where k is the length in octets of the modulus n and hLen is
the length in octets of the hash function output for EME-OAEP

P encoding parameters, an octet string that may be empty

Output: C ciphertext, an octet string of length k

Errors: “message too long”

Assumptions:public key (n, e) is valid

Steps:

1. Apply the EME-OAEP encoding operation (Section 9.1.1.2) to the message M and
the encoding parameters P to produce an encoded message EM of length k–1
octets:

EM = EME-OAEP-ENCODE (M, P, k–1) .

If the encoding operation outputs “message too long,” then output “message too
long” and stop.

2. Convert the encoded message EM to an integer message representative m:

m = OS2IP (EM) .

3. Apply the RSAEP encryption primitive (Section 5.1.1) to the public key (n, e) and
the message representative m to produce an integer ciphertext representative c:

c = RSAEP ((n, e), m) .

4. Convert the ciphertext representative c to a ciphertext C of length k octets:
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C = I2OSP (c, k) .

5. Output the ciphertext C.

7.1.2 Decryption operation

RSAES-OAEP-DECRYPT (K, C, P)

Input: K recipient’s RSA private key

C ciphertext to be decrypted, an octet string of length k, where k is
the length in octets of the modulus n

P encoding parameters, an octet string that may be empty

Output: M message, an octet string of length at most k–2–2hLen, where hLen
is the length in octets of the hash function output for EME-OAEP

Errors: “decryption error”

Steps:

1. If the length of the ciphertext C is not k octets, output “decryption error” and stop.

2. Convert the ciphertext C to an integer ciphertext representative c:

c = OS2IP (C) .

3. Apply the RSADP decryption primitive (Section 5.1.2) to the private key K and
the ciphertext representative c to produce an integer message representative m:

m = RSADP (K, c) .

If RSADP outputs “ciphertext out of range,” then output “decryption error” and
stop.

4. Convert the message representative m to an encoded message EM of length k–1
octets:

EM = I2OSP (m, k–1) .

If I2OSP outputs “integer too large,” then output “decryption error” and stop.

5. Apply the EME-OAEP decoding operation to the encoded message EM and the
encoding parameters P to recover a message M:

M = EME-OAEP-DECODE (EM, P) .
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If the decoding operation outputs “decoding error,” then output “decryption error”
and stop.

6. Output the message M.

Note. It is important that the error messages output in steps 4 and 5 be the same, otherwise an adversary
may be able to extract useful information from the type of error message received. Error message
information is used to mount a chosen ciphertext attack on PKCS #1 v1.5 encrypted messages in [5].

7.2 RSAES-PKCS1-v1_5

RSAES-PKCS1-v1_5 combines the RSAEP and RSADP primitives with the EME-
PKCS1-v1_5 encoding method. It is the same as the encryption scheme in PKCS #1 v1.5.
RSAES-PKCS1-v1_5 can operate on messages of length up to k–11 octets, although care
should be taken to avoid certain attacks on low-exponent RSA due to Coppersmith, et al.
when long messages are encrypted (see the third bullet in the notes below and [7]).

RSAES-PKCS1-v1_5 does not provide “plaintext-aware” encryption. In particular, it is
possible to generate valid ciphertexts without knowing the corresponding plaintexts, with
a reasonable probability of success. This ability can be exploited in a chosen ciphertext
attack as shown in [5]. Therefore, if RSAES-PKCS1-v1_5 is to be used, certain easily
implemented countermeasures should be taken to thwart the attack found in [5]. The
addition of structure to the data to be encoded, rigorous checking of PKCS #1 v1.5
conformance and other redundancy in decrypted messages, and the consolidation of error
messages in a client-server protocol based on PKCS #1 v1.5 can all be effective
countermeasures and don’t involve changes to a PKCS #1 v1.5-based protocol. These and
other countermeasures are discussed in [6].

Notes. The following passages describe some security recommendations pertaining to the use of RSAES-
PKCS1-v1_5. Recommendations from version 1.5 of this document are included as well as new
recommendations motivated by cryptanalytic advances made in the intervening years.

• It is recommended that the pseudorandom octets in EME-PKCS1-v1_5 be generated independently
for each encryption process, especially if the same data is input to more than one encryption process.
Hastad's results [16] are one motivation for this recommendation.

• The padding string PS in EME-PKCS1-v1_5 is at least eight octets long, which is a security
condition for public-key operations that prevents an attacker from recovering data by trying all
possible encryption blocks.

• The pseudorandom octets can also help thwart an attack due to Coppersmith et al. [7] when the size
of the message to be encrypted is kept small. The attack works on low-exponent RSA when similar
messages are encrypted with the same public key. More specifically, in one flavor of the attack,
when two inputs to RSAEP agree on a large fraction of bits (8/9) and low-exponent RSA (e = 3) is
used to encrypt both of them, it may be possible to recover both inputs with the attack. Another
flavor of the attack is successful in decrypting a single ciphertext when a large fraction (2/3) of the
input to RSAEP is already known. For typical applications, the message to be encrypted is short
(e.g., a 128-bit symmetric key) so not enough information will be known or common between two
messages to enable the attack. However, if a long message is encrypted, or if part of a message is
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known, then the attack may be a concern. In any case, the RSAEP-OAEP scheme overcomes the
attack.

7.2.1 Encryption operation

RSAES-PKCS1-V1_5-ENCRYPT ((n, e), M)

Input: (n, e) recipient’s RSA public key

M message to be encrypted, an octet string of length at most k–11
octets, where k is the length in octets of the modulus n

Output: C ciphertext, an octet string of length k

Errors: “message too long”

Steps:

1. Apply the EME-PKCS1-v1_5 encoding operation (Section 9.1.2.1) to the message
M to produce an encoded message EM of length k–1 octets:

EM = EME-PKCS1-V1_5-ENCODE (M, k–1) .

If the encoding operation outputs “message too long,” then output “message too
long” and stop.

2. Convert the encoded message EM to an integer message representative m:

m = OS2IP (EM) .

3. Apply the RSAEP encryption primitive (Section 5.1.1) to the public key (n, e) and
the message representative m to produce an integer ciphertext representative c:

c = RSAEP ((n, e), m) .

4. Convert the ciphertext representative c to a ciphertext C of length k octets:

C = I2OSP (c, k) .

5. Output the ciphertext C.

7.2.2 Decryption operation

RSAES-PKCS1-V1_5-DECRYPT (K, C)

Input: K recipient’s RSA private key
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C ciphertext to be decrypted, an octet string of length k, where k is
the length in octets of the modulus n

Output: M message, an octet string of length at most k–11

Errors: “decryption error”

Steps:

1. If the length of the ciphertext C is not k octets, output “decryption error” and stop.

2. Convert the ciphertext C to an integer ciphertext representative c:

c = OS2IP (C) .

3. Apply the RSADP decryption primitive to the private key (n, d) and the ciphertext
representative c to produce an integer message representative m:

m = RSADP ((n, d), c) .

If RSADP outputs “ciphertext out of range,” then output “decryption error” and
stop.

4. Convert the message representative m to an encoded message EM of length k–1
octets:

EM = I2OSP (m, k–1) .

If I2OSP outputs “integer too large,” then output “decryption error” and stop.

5. Apply the EME-PKCS1-v1_5 decoding operation to the encoded message EM to
recover a message M:

M = EME-PKCS1-V1_5-DECODE (EM) .

If the decoding operation outputs “decoding error,” then output “decryption error”
and stop.

6. Output the message M.

Note. It is important that only one type of error message is output by EME-PKCS1-v1_5, as ensured by
steps 4 and 5. If this is not done, then an adversary may be able to use information extracted form the
type of error message received to mount a chosen ciphertext attack such as the one found in [5].

8. Signature schemes with appendix

A signature scheme with appendix consists of a signature generation operation and a
signature verification operation, where the signature generation operation produces a
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signature from a message with a signer's private key, and the signature verification
operation verifies the signature on the message with the signer's corresponding public key.
To verify a signature constructed with this type of scheme it is necessary to have the
message itself. In this way, signature schemes with appendix are distinguished from
signature schemes with message recovery, which are not supported in this document.

A signature scheme with appendix can be employed in a variety of applications. For
instance, the signature scheme with appendix defined here would be a suitable signature
algorithm for X.509 certificates [20]. A related signature scheme could be employed in
PKCS #7 [28], although for technical reasons, the current version of PKCS #7 separates a
hash function from a signature scheme, which is different than what is done here.

Two signature schemes with appendix are specified in this document: RSASSA-PKCS1-
v1_5 and RSASSA-PSS. Although no attacks are known against RSASSA-PKCS1-v1_5,
in the interest of increased robustness, RSASSA-PSS is recommended for eventual
adoption in new applications. RSASSA-PKCS1-v1_5 is included for compatibility with
existing applications, and while still appropriate for new applications, a gradual transition
to RSASSA-PSS is encouraged.

The signature schemes with appendix given here follow a general model similar to that
employed in the IEEE P1363 draft, by combining signature and verification primitives with
an encoding method for signatures. The signature generation operations apply a message
encoding operation to a message to produce an encoded message, which is then converted
to an integer message representative. A signature primitive is then applied to the message
representative to produce the signature. The signature verification operations apply a
signature verification primitive to the signature to recover a message representative, which
is then converted to an octet string. If the encoding method is deterministic (e.g., EMSA-
PKCS1-v1_5), the message encoding operation is again applied to the message and the
result is compared to the recovered octet string. If there is a match, the signature is
considered valid. If the method is randomized (e.g., EMSA-PSS), a verification operation
is applied to the message and the octet string to determine whether they are consistent.
(Note that this approach assumes that the signature and verification primitives have the
message-recovery form. The signature generation and verification operations have a
different form in the IEEE P1363 draft for other primitives.)

8.1 RSASSA-PKCS1-v1_5

RSASSA-PKCS1-v1_5 combines the RSASP1 and RSAVP1 primitives with the EMSA-
PKCS1-v1_5 encoding method. It is compatible with the IFSSA scheme defined in the
IEEE P1363 draft where the signature and verification primitives are IFSP-RSA1 and
IFVP-RSA1 and the message encoding method is EMSA-PKCS1-v1_5 (which is not
defined in the IEEE P1363 draft). The length of messages on which RSASSA-PKCS1-
v1_5 can operate is either unrestricted or constrained by a very large number, depending
on the hash function underlying the EMSA-PKCS1-v1_5 method.
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Assuming that the hash function in EMSA-PKCS1-v1_5 has appropriate properties and
the key size is sufficiently large, RSASSA-PKCS1-v1_5 provides secure signatures,
meaning that it is computationally infeasible to generate a signature without knowing the
private key, and computationally infeasible to find a message with a given signature or two
messages with the same signature. Also, in the encoding method EMSA-PKCS1-v1_5, a
hash function identifier is embedded in the encoding. Because of this feature, an adversary
must invert or find collisions of the particular hash function being used; attacking a
different hash function than the one selected by the signer is not useful to the adversary.

Notes.

1. As noted in PKCS #1 v1.5, the EMSA-PKCS1-v1_5 encoding method has the property that the
encoded message, converted to an integer message representative, is guaranteed to be large and at least
somewhat “random”. This prevents attacks of the kind proposed by Desmedt and Odlyzko [12] where
multiplicative relationships between message representatives are developed by factoring the message
representatives into a set of small values (e.g., a set of small primes). Recently Coron, Naccache and
Stern [9] showed that a stronger form of this type of attack could be quite effective against some
instances of the ISO/IEC 9796-2 signature scheme. They also analyzed the complexity of this type of
attack against the EMSA-PKCS1-v1_5 encoding method and concluded that an attack would be
impractical, requiring more operations than a collision search on the underlying hash function (i.e., more
than 280 operations). Coron et al.’s attack was subsequently extended by Coppersmith, Halevi and Jutla
[8] to break the ISO/IEC 9769-1 signature scheme with message recovery. The various attacks illustrate
the importance of carefully constructing the input to the RSA signature primitive, particularly in a
signature scheme with message recovery. Accordingly, the EMSA-PKCS-v1_5 encoding method
explicitly includes a hash operation and is not intended for signature schemes with message recovery.
Moreover, while no attack is known against the EMSA-PKCS-v1_5 encoding method, a gradual
transition to EMSA-PSS is recommended as a precaution against future developments.

2. The signature generation and verification operation operations are readily implemented as “single-
pass” operations if the signature is placed after the message. See PKCS #7 [28] for an example format.

8.1.1 Signature generation operation

RSASSA-PKCS1-V1_5-SIGN (K, M)

Input: K signer’s RSA private key

M message to be signed, an octet string

Output: S signature, an octet string of length k, where k is the length in octets
of the modulus n

Errors: “message too long”; “modulus too short”

Steps:

1. Apply the EMSA-PKCS1-v1_5 encoding operation (Section 9.2.1) to the message
M to produce an encoded message EM of length k–1 octets:
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EM = EMSA-PKCS1-V1_5-ENCODE (M, k–1) .

If the encoding operation outputs “message too long,” then output “message too
long” and stop. If the encoding operation outputs “intended encoded message
length too short,” then output “modulus too short” and stop.

2. Convert the encoded message EM to an integer message representative m:

m = OS2IP (EM) .

3. Apply the RSASP1 signature primitive (Section 5.2.1) to the private key K and the
message representative m to produce an integer signature representative s:

s = RSASP1 (K, m) .

4. Convert the signature representative s to a signature S of length k octets:

S = I2OSP (s, k) .

5. Output the signature S.

8.1.2 Signature verification operation

RSASSA-PKCS1-V1_5-VERIFY ((n, e), M, S)

Input: (n, e) signer’s RSA public key

M message whose signature is to be verified, an octet string

S signature to be verified, an octet string of length k, where k is the
length in octets of the modulus n

Output: “valid signature” or “invalid signature”

Errors: “message too long”; “modulus too short”

Steps:

1. Apply the EMSA-PKCS1-v1_5 encoding operation (Section 9.2.1) to the message
M to produce an encoded message EM of length k–1 octets:

EM = EMSA-PKCS1-V1_5-ENCODE (M, k–1) .

If the encoding operation outputs “message too long,” then output “message too
long” and stop. If the encoding operation outputs “intended encoded message
length too short,” then output “modulus too short” and stop.
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2. If the length of the signature S is not k octets, output “invalid signature” and stop.

3. Convert the signature S to an integer signature representative s:

s = OS2IP (S) .

4. Apply the RSAVP1 verification primitive (Section 5.2.2) to the public key (n, e)
and the signature representative s to produce an integer message representative m:

m = RSAVP1 ((n, e), s) .

If RSAVP1 outputs “signature representative out of range,” then output “invalid
signature” and stop.

5. Convert the message representative m to a second encoded message EM of length
k-1 octets:

EM’ = I2OSP (m, k–1) .

If I2OSP outputs “integer too large,” then output “invalid signature” and stop.

6. Compare the encoded message EM and the second encoded message EM’. If they
are the same, output “valid signature”; otherwise, output “invalid signature.”

Note. Another way to implement the signature verification operation is to apply a decoding operation (not
specified in this document) to the encoded message to recover the underlying hash value, and then to
compare it to a newly computed hash value. This has the advantage that it requires less intermediate
storage (two hash values rather than two encoded messages), but the disadvantage that it requires
additional code.

8.2 RSASSA-PSS

RSASSA-PSS combines the RSASP1 and RSAVP1 primitives with the EMSA-PSS
encoding method. It is compatible with the IFSSA scheme defined in the IEEE P1363
draft where the signature and verification primitives are IFSP-RSA1 and IFVP-RSA1 and
the message encoding method is EMSA-PSS (which is not defined in the IEEE P1363
draft). The length of messages on which RSASSA-PSS can operate is either unrestricted
or constrained by a very large number, depending on the hash function underlying the
EMSA-PSS encoding method.

Assuming that the hash and mask generation functions in EMSA-PSS have appropriate
properties and the key size is sufficiently large, RSASSA-PSS provides secure signatures.
This assurance is provable in the sense that the difficulty of forging signatures can be
directly related to the difficulty of inverting the RSA function, if the hash and mask
generation functions are viewed as a black box or random oracle. In contrast to the
RSASSA-PKCS1-v1_5 signature scheme, a hash function identifier is not embedded in the
encoded message, so in theory it is possible for an adversary to substitute a different hash



PKCS #1 V2.1: RSA CRYPTOGRAPHY STANDARD 23

Copyright © 1999 RSA Security Inc.

function than the one selected by the signer. However, this is not likely to be useful
assuming that the mask generation function is based on the same hash function, since then
the entire encoded message will be dependent on the selected hash function, not just the
portion corresponding to the hash value as in EMSA-PKCS1-v1_5.

RSASSA-PSS is different than other RSA-based signature schemes in that it is
probabilistic rather than deterministic, incorporating a randomly generated salt value. The
salt value enhances the security of the scheme by affording a more “tight” security proof
than deterministic alternatives such as Full Domain Hashing (FDH) (see [3] for
discussion). However, the randomness is not critical to security. In situations where
random generation is not possible, a fixed value or a sequence number could be employed
instead, with the resulting provable security similar to that of FDH. The randomness also
reduces the requirements on the underlying hash function. Since an opponent does not
know which salt value the signer will select, finding a collision in the hash function (two
messages with the same hash value) does not enable an opponent to forge signatures.
Accordingly, the collision-resistance of the hash function is not as important as in a
deterministic signature scheme.

Note. The signature generation and verification operation operations are readily implemented as “single-
pass” operations if the signature is placed after the message and the salt value produced by the signature
generation operation is carried before it.

8.2.1 Signature generation operation

RSASSA-PSS-SIGN (K, M)

Input: K signer’s RSA private key

M message to be signed, an octet string

Output: S signature, an octet string of length k, where k is the length in octets
of the modulus n

salt (optional) salt value, an octet string of length hLen

Errors: “message too long”; “modulus too short”

Steps:

1. Generate a random octet string salt of length hLen.

2. Apply the EMSA-PSS encoding operation (Section 9.2.2) to the message M and
the salt value to produce an encoded message EM of length k–1 octets:

EM = EMSA-PSS-ENCODE (M, salt, k–1) .
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If the encoding operation outputs “message too long,” then output “message too
long” and stop. If the encoding operation outputs “intended encoded message
length too short,” then output “modulus too short” and stop.

3. Convert the encoded message EM to an integer message representative m:

m = OS2IP (EM) .

4. Apply the RSASP1 signature primitive (Section 5.2.1) to the private key K and the
message representative m to produce an integer signature representative s:

s = RSASP1 (K, m) .

5. Convert the signature representative s to a signature S of length k octets:

S = I2OSP (s, k) .

6. Output the signature S and if desired the salt value.

8.2.2 Signature verification operation

RSASSA-PSS-VERIFY ((n, e), M, S, [salt])

Input: (n, e) signer’s RSA public key

M message whose signature is to be verified, an octet string

S signature to be verified, an octet string of length k, where k is the
length in octets of the modulus n

salt (optional) salt value generated by RSASSA-PSS-SIGN, an octet
string of length hLen

Output: “valid signature” or “invalid signature”

Errors: “message too long”; “modulus too short”

Steps: (There are two cases, depending on whether the salt value is provided.)

If the salt value is provided:

1. Apply the EMSA-PSS encoding operation (Section 9.2.2) to the message M and
the salt value to produce an encoded message EM of length k–1 octets:

EM = EMSA-PSS-ENCODE (H, salt, k–1) .
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If the encoding operation outputs “message too long,” then output “message too
long” and stop. If the encoding operation outputs “intended encoded message
length too short,” then output “modulus too short” and stop.

2. If the length of the signature S is not k octets, output “invalid signature” and stop.

3. Convert the signature S to an integer signature representative s:

s = OS2IP (S) .

4. Apply the RSAVP1 verification primitive (Section 5.2.2) to the public key (n, e)
and the signature representative s to produce an integer message representative m:

m = RSAVP1 ((n, e), s) .

If RSAVP1 outputs “invalid,” then output “invalid signature” and stop.

5. Convert the message representative m to a second encoded message EM’ of length
k-1 octets:

EM’ = I2OSP (m, k–1) .

If I2OSP outputs “integer too large,” then output “invalid signature” and stop.

6. Compare the encoded message EM and the second encoded message EM’. If they
are the same, output “valid signature”; otherwise, output “invalid signature.”

If the salt value is not provided:

1. If the length of the signature S is not k octets, output “invalid signature” and stop.

2. Convert the signature S to an integer signature representative s:

s = OS2IP (S) .

3. Apply the RSAVP1 verification primitive (Section 5.2.2) to the public key (n, e)
and the signature representative s to produce an integer message representative m:

m = RSAVP1 ((n, e), s) .

If RSAVP1 outputs “invalid,” then output “invalid signature” and stop.

4. Convert the message representative m to an encoded message EM of length k-1
octets:

EM’ = I2OSP (m, k–1) .

If I2OSP outputs “integer too large,” then output “invalid signature” and stop.
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5. Apply the EMSA-PSS verification operation (Section 9.2.2.2) to the message M
and the encoded message EM to determine whether they are consistent:

EMSA-PSS-VERIFY (M, EM) .

If the verification operation outputs “message too long,” then output “message too
long” and stop. If the verification operation outputs “consistent,” then output
“valid signature”; otherwise, output “invalid signature.”

Note. Another way to implement the signature verification operation in either case is to apply a decoding
operation (not specified in this document) to the encoded message to recover the underlying hash and salt
values, rather than applying the verification or encoding operation. The advantages and disadvantages are
similar to those noted for EMSA-PKCS1-v1_5.

9. Encoding methods

Encoding methods consist of operations that map between octet string messages and octet
string encoded messages, which are converted to and from integer message
representatives in the schemes. The integer message representatives are processed by the
primitives. The encoding methods thus provide the connection between the schemes,
which process messages, and the primitives.

Two types of encoding method are considered in this document: encoding methods for
encryption and encoding methods for signatures with appendix.

9.1 Encoding methods for encryption

An encoding method for encryption consists of an encoding operation and a decoding
operation. An encoding operation maps a message M to an encoded message EM of a
specified length; the decoding operation maps an encoded message EM back to a message.
The encoding and decoding operations are inverses.

The encoded message EM will typically have some structure that can be verified by the
decoding operation. The decoding operation will output “decoding error” if the structure
is not present. The encoding operation may also introduce some randomness, so that
different applications of the encoding operation to the same message will produce encoded
messages.

Two encoding methods for encryption are employed in the encryption schemes and are
specified here: EME-OAEP and EME-PKCS1-v1_5.

9.1.1 EME-OAEP

This encoding method is parameterized by the choice of hash function and mask
generation function. Suggested hash and mask generation functions are given in Appendix
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B. The encoding method is based on Bellare and Rogaway’s Optimal Asymmetric
Encryption scheme [2]. (OAEP stands for “Optimal Asymmetric Encryption Padding.”) It
is the same as the method in the IEEE P1363 draft except that it outputs an octet string
rather than the corresponding integer, and that the length of the encoded message is
expressed in octets rather than bits. Figure 1 illustrates the encoding operation.

9.1.1.1 Encoding operation

EME-OAEP-ENCODE (M, P, emLen)

Options: Hash hash function (hLen denotes the length in octets of the hash
function output)

pHash

xor

DB

EM

maskedDB

seed M

MGF

xor MGF

maskedSeed

PS

Figure 1: EME-OAEP encoding operation. pHash is the hash of the optional encoding
parameters. Decoding operation follows reverse steps to recover M and verify pHash and

PS.
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MGF mask generation function

Input: M message to be encoded, an octet string of length at most emLen–1–
2hLen (mLen denotes the length in octets of M)

P encoding parameters, an octet string

emLenintended length in octets of the encoded message, at least 2hLen+1

Output: EM encoded message, an octet string of length emLen

Errors: “message too long”; “parameter string too long”

Steps:

1. If the length of P is greater than the input limitation for the hash function (261–1
octets for SHA-1) then output “parameter string too long” and stop.

2. If mLen > emLen–2hLen–1, output “message too long” and stop.

3. Generate an octet string PS consisting of emLen–mLen–2hLen–1 zero octets. The
length of PS may be 0.

4. Let pHash = Hash (P), an octet string of length hLen.

5. Concatenate pHash, PS, the message M, and other padding to form a data block
DB as

DB = pHash || PS || 01 || M .

6. Generate a random octet string seed of length hLen.

7. Let dbMask = MGF (seed, emLen–hLen).

8. Let maskedDB = DB xor dbMask.

9. Let seedMask = MGF (maskedDB, hLen).

10. Let maskedSeed = seed xor seedMask.

11. Let EM = maskedSeed || maskedDB.

12. Output EM.

9.1.1.2 Decoding operation

EME-OAEP-DECODE (EM, P)
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Options: Hash hash function (hLen denotes the length in octets of the hash
function output)

MGF mask generation function

Input: EM encoded message, an octet string of length at least 2hLen+1
(emLen denotes the length in octets of EM)

P encoding parameters, an octet string

Output: M recovered message, an octet string of length at most emLen–1–
2hLen

Errors: “decoding error”

Steps:

1. If the length of P is greater than the input limitation of the hash function (261–1
octets for SHA-1) then output “decoding error” and stop.

2. If emLen < 2hLen+1, output “decoding error” and stop.

3. Let maskedSeed be the first hLen octets of EM and let maskedDB be the remaining
emLen–hLen octets.

4. Let seedMask = MGF (maskedDB, hLen).

5. Let seed = maskedSeed xor seedMask.

6. Let dbMask = MGF (seed, emLen–hLen).

7. Let DB = maskedDB xor dbMask.

8. Let pHash = Hash (P), an octet string of length hLen.

9. Separate DB into an octet string pHash consisting of the first hLen octets of DB, a
(possibly empty) octet string PS consisting of consecutive zero octets following
pHash’, and a message M as

DB = pHash’ || PS || 01 || M .

If there is no 01 octet to separate PS from M, output “decoding error” and stop.

10. If pHash’ does not equal pHash, output “decoding error” and stop.

11. Output M.
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9.1.2 EME-PKCS1-v1_5

This encoding method is the same as in PKCS #1 v1.5, Section 8: Encryption Process.

9.1.2.1 Encoding operation

EME-PKCS1-V1_5-ENCODE (M, emLen)

Input: M message to be encoded, an octet string of length at most emLen–10
(mLen denotes the length in octets of M)

emLenintended length in octets of the encoded message

Output: EM encoded message, an octet string of length emLen

Errors: “message too long”

Steps:

1. If mLen > emLen–10, output “message too long” and stop.

2. Generate an octet string PS of length emLen–mLen–2 consisting of
pseudorandomly generated nonzero octets. The length of PS will be at least 8
octets.

3. Concatenate PS, the message M, and other padding to form the encoded message
EM as

EM = 02 || PS || 00 || M

4. Output EM.

9.1.2.2 Decoding operation

EME-PKCS1-V1_5-DECODE (EM)

Input: EM encoded message, an octet string of length at least 10 (emLen
denotes the length in octets of EM)

Output: M recovered message, an octet string of length at most emLen–10

Errors: “decoding error”

Steps:

1. If emLen < 10, output “decoding error” and stop.
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2. Separate the encoded message EM into an octet string PS consisting of nonzero
octets and a message M as

EM = 02 || PS || 00 || M .

If the first octet of EM is not 02, or if there is no 00 octet to separate PS from M,
output “decoding error” and stop.

3. If the length of PS is less than 8 octets, output “decoding error” and stop.

4. Output M.

9.2 Encoding methods for signatures with appendix

An encoding method for signatures with appendix, for the purposes of this document,
consists of an encoding operation and optionally a verification operation. An encoding
operation maps a message M to an encoded message EM of a specified length. A
verification operation determines whether a message M and an encoded message EM are
consistent, i.e., whether the encoded message EM is a valid encoding of the message M.

The encoding operation may introduce some randomness, so that different applications of
the encoding operation to the same message will produce different encoded messages,
which has benefits for provable security. For such an encoding method, both an encoding
and a verification operation are needed unless the randomness can be reproduced by the
verifier (e.g., by obtaining the salt value from the signer). For a deterministic encoding
method only an encoding operation is needed.

Two encoding methods for signatures with appendix are employed in the signature
schemes and are specified here: EMSA-PKCS1-v1_5 and EMSA-PSS.

9.2.1 EMSA-PKCS1-v1_5

This encoding method is deterministic and only has an encoding operation.

EMSA-PKCS1-v1_5-ENCODE (M, emLen)

Option: Hash hash function (hLen denotes the length in octets of the hash
function output)

Input: M message to be encoded

emLenintended length in octets of the encoded message, at least ||T||+10,
where T is the DER encoding of a certain value computed during
the encoding operation

Output: EM encoded message, an octet string of length emLen
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Errors: “message too long”; “intended encoded message length too short”

Steps:

1. Apply the hash function to the message M to produce a hash value H:

H = Hash (M).

If the hash function outputs “message too long,” then output “message too long”
and stop.

2. Encode the algorithm ID for the hash function and the hash value into an ASN.1
value of type DigestInfo  (see Section A) with the Distinguished Encoding
Rules (DER), where the type DigestInfo  has the syntax

DigestInfo ::= SEQUENCE {
  digestAlgorithm AlgorithmIdentifier,
  digest OCTET STRING }

The first field identifies the hash function and the second contains the hash value.
Let T be the DER encoding.1

3. If emLen < ||T||+10, output “intended encoded message length too short” and stop.

4. Generate an octet string PS consisting of emLen–||T||–2 octets with value FF
(hexadecimal). The length of PS will be at least 8 octets.

5. Concatenate PS, the DER encoding T, and other padding to form the encoded
message EM as

EM = 01 || PS || 00 || T .

6. Output EM.

9.2.2 EMSA-PSS

This encoding method is parameterized by the choice of hash function and mask
generation function. Suggested hash and mask generation functions are given in Appendix
B. The encoding method is based on Bellare and Rogaway’s Probabilistic Signature

                                               

1 For the three hash functions mentioned in Appendix B.1, this step is equivalent to the following:

For MD2: T = 30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 02 05 00 04 10 || H  .
For MD5: T = 30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 05 05 00 04 10 || H  .

For SHA-1: T = 30 21 30 1f 06 05 2b 0e 03 02 1a 05 00 04 14 || H   .
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Scheme (PSS) [3][4]. It is randomized and has an encoding operation and a verification
operation. Figure 2Figure 2 illustrates the encoding operation.

Notes.

1. The encoding method defined here differs from the one in Bellare and Rogaway’s submission [4] in
two respects. First, it applies a hash function to the message rather than a mask generation function. Even
though the mask generation function is based on a hash function, it seems more natural to apply the hash
function directly. Second, the salt value is an input to the operation, rather than an internal value. This
facilitates “one-pass” processing (see notes to Section 8.2), particularly in the case of signature
verification. (Also, the name “salt” is used instead of “seed”, as it is more reflective of the value’s role.)

2. The salt value is a fixed length for a given hash function in this encoding method, thereby avoiding the
need for including the salt length in the input to the hash function as discussed in [4].

3. Assuming that the mask generation is based on a hash function, it is recommended that the hash
function be the same as the one that is applied to the message. In this way, the entire encoded message
will be dependent on the same hash function and it will be difficult for an opponent to substitute a
different hash function than the one intended by the signer (see Section 8.2). However, this matching of
hash functions is not strictly necessary for security.

salt

xor

DB

EM

maskedDB

M PS

Hash

MGFH

Figure 2: EMSA-PSS encoding operation. Verification operation follows reverse steps
to recover salt, then forward steps to recompute and compare H.
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9.2.2.1 Encoding operation

EMSA-PSS-ENCODE (M, salt, emLen)

Options: Hash hash function (hLen denotes the length in octets of the hash
function output)

MGF mask generation function

Input: M message to be encoded, an octet string

salt salt value, an octet string of length hLen

emLenintended length in octets of the encoded message, at least 2hLen

Output: EM encoded message, an octet string of length emLen

Errors: “message too long”; “intended encoded message length too short”

Steps:

1. If emLen < 2hLen, output “intended encoded message length too short” and stop.

2. Apply the hash function to the salt value and the message M to produce a hash
value H:

H = Hash (salt || M) .

If the hash function outputs “message too long,” then output “message too long”
and stop.

3. Generate an octet string PS consisting of emLen–2hLen zero octets. The length of
PS may be 0.

4. Concatenate salt and PS to form a data block DB as

DB = salt || PS .

5. Let dbMask = MGF (H, emLen–hLen).

6. Let maskedDB = DB xor dbMask.

7. Let EM = H || maskedDB.

8. Output EM.
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9.2.2.2 Verification operation

EMSA-PSS-VERIFY (M, EM)

Options: Hash hash function (hLen denotes the length in octets of the hash
function output)

MGF mask generation function

Input: M message to be verified

EM encoded message to be verified, an octet string of length at least
2hLen (emLen denotes the length in octets of EM)

Output: “consistent” or “inconsistent”

Errors: “message too long”; “encoded message too short”

Steps:

1. If emLen < 2hLen, output “encoded message too short” and stop.

2. Let H be the first hLen octets of EM and let maskedDB be the remaining emLen–
hLen octets.

3. Let dbMask = MGF (H, emLen–hLen).

4. Let DB = maskedDB xor dbMask.

5. Let salt be the first hLen octets of DB and let PS be the remaining emLen–2hLen
octets.

7. If PS does not consist of emLen–2hLen zero octets, output “inconsistent” and
stop.

8. Apply the hash function to the salt and the message M to produce a second hash
value H’:

H’ = Hash (salt || M) .

If the hash function outputs “message too long,” then output “message too long”
and stop.

9. If H’ equals H, then output “consistent”; otherwise output “inconsistent.”
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A. ASN.1 syntax

[[This section may be updated to improve the presentation of the ASN.1 syntax.]]

A.1 Key representation

This section defines ASN.1 object identifiers for RSA public and private keys, and defines
the types RSAPublicKey  and RSAPrivateKey . The intended application of these
definitions includes X.509 certificates, PKCS #8 [29], and PKCS #12 [30].

The object identifier rsaEncryption  identifies RSA public and private keys as defined
in Appendices A.1.1 and A.1.2. The parameters  field associated with this OID in an
AlgorithmIdentifier  shall have type NULL.

rsaEncryption OBJECT IDENTIFIER ::= {pkcs-1 1}

All of the definitions in this section are the same as in PKCS #1 v1.5.

A.1.1 Public-key syntax

An RSA public key should be represented with the ASN.1 type RSAPublicKey :

RSAPublicKey ::= SEQUENCE {
  modulus INTEGER, -- n
  publicExponent INTEGER -- e }

(This type is specified in X.509 and is retained here for compatibility.)

The fields of type RSAPublicKey  have the following meanings:

• modulus  is the modulus n.

• publicExponent  is the public exponent e.

A.1.2 Private-key syntax

An RSA private key should be represented with ASN.1 type RSAPrivateKey :

RSAPrivateKey ::= SEQUENCE {
  version Version,
  modulus INTEGER, -- n
  publicExponent INTEGER, -- e
  privateExponent INTEGER, -- d
  prime1 INTEGER, -- p
  prime2 INTEGER, -- q
  exponent1 INTEGER, -- d mod (p-1)
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  exponent2 INTEGER, -- d mod (q-1)
  coefficient INTEGER -- (inverse of q) mod p }

Version ::= INTEGER

The fields of type RSAPrivateKey  have the following meanings:

• version  is the version number, for compatibility with future revisions of
this document. It shall be 0 for this version of the document.

• modulus  is the modulus n.

• publicExponent  is the public exponent e.

• privateExponent  is the private exponent d.

• prime1  is the prime factor p of n.

• prime2  is the prime factor q of n.

• exponent1  is d mod (p−1).

• exponent2  is d mod (q−1).

• coefficient  is the Chinese Remainder Theorem coefficient q-1 mod p.

A.2 Scheme identification

This section defines object identifiers for the encryption and signature schemes. The
schemes compatible with PKCS #1 v1.5 have the same definitions as in PKCS #1 v1.5.
The intended application of these definitions includes X.509 certificates and PKCS #7.

A.2.1 RSAES-OAEP

The object identifier id-RSAES-OAEP  identifies the RSAES-OAEP encryption scheme.

id-RSAES-OAEP OBJECT IDENTIFIER ::= {pkcs-1 7}

The parameters  field associated with this OID in an AlgorithmIdentifier  shall
have type RSAEP-OAEP-params:

RSAES-OAEP-params ::= SEQUENCE {
  hashFunc [0] AlgorithmIdentifier {{oaepDigestAlgorithms}}
    DEFAULT sha1Identifier,
  maskGenFunc [1] AlgorithmIdentifier {{pkcs1MGFAlgorithms}}
    DEFAULT mgf1SHA1Identifier,
  pSourceFunc [2] AlgorithmIdentifier
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    {{pkcs1pSourceAlgorithms}}
    DEFAULT pSpecifiedEmptyIdentifier }

The fields of type RSAES-OAEP-params have the following meanings:

• hashFunc  identifies the hash function. It shall be an algorithm ID with an OID in the
set oaepDigestAlgorithms , which for this version shall consist of id-sha1 ,
identifying the SHA-1 hash function (see Appendix B.1).

oaepDigestAlgorithms ALGORITHM-IDENTIFIER ::= {
  {NULL IDENTIFIED BY id-sha1} }

The default hash function is SHA-1:

sha1Identifier ::= AlgorithmIdentifier {id-sha1, NULL}

• maskGenFunc  identifies the mask generation function. It shall be an algorithm ID
with an OID in the set pkcs1MGFAlgorithms , which for this version shall consist
of id-mgf1 , identifying the MGF1 mask generation function (see Appendix B.2.1).
The parameters  field for id-mgf1  shall be an algorithm ID with an OID in the set
oaepDigestAlgorithms , identifying the hash function on which MGF1 is based.

pkcs1MGFAlgorithms ALGORITHM-IDENTIFIER ::= {
  {AlgorithmIdentifier {{oaepDigestAlgorithms}} IDENTIFIED
    BY id-mgf1} }

The default mask generation function is MGF1 with SHA-1:

mgf1SHA1Identifier ::= AlgorithmIdentifier {
  id-mgf1, sha1Identifier }

• pSourceFunc  identifies the source (and possibly the value) of the encoding
parameters P. It shall be an algorithm ID with an OID in the set
pkcs1pSourceAlgorithms , which for this version shall consist of id-
pSpecified , indicating that the encoding parameters are specified explicitly. The
parameters  field for id-pSpecified  shall have type OCTET STRING,
containing the encoding parameters.

pkcs1pSourceAlgorithms ALGORITHM-IDENTIFIER ::= {
  {OCTET STRING IDENTIFIED BY id-pSpecified} }

id-pSpecified OBJECT IDENTIFIER ::= {pkcs-1 9}

The default encoding parameters is an empty string (so that pHash in EME-OAEP will
contain the hash of the empty string):

pSpecifiedEmptyIdentifier ::= AlgorithmIdentifier {
  id-pSpecified, OCTET STRING SIZE (0) }
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If all of the default values of the fields in RSAES-OAEP-params are used, then the
algorithm identifier will have the following value:

RSAES-OAEP-Default-Identifier ::= AlgorithmIdentifier {
  id-RSAES-OAEP,
  {sha1Identifier,
   mgf1SHA1Identifier,
   pSpecifiedEmptyIdentifier } }

A.2.2 RSAES-PKCS1-v1_5

The object identifier rsaEncryption  (Appendix A.1) identifies the RSAES-PKCS1-
v1_5 encryption scheme. The parameters  field associated with this OID in an
AlgorithmIdentifier  shall have type NULL. This is the same as in PKCS #1 v1.5.

rsaEncryption OBJECT IDENTIFIER ::= {pkcs-1 1}

A.2.3 RSASSA-PKCS1-v1_5

The object identifier for RSASSA-PKCS1-v1_5 shall be one of the following. The choice
of OID depends on the choice of hash algorithm: MD2, MD5 or SHA-1. Note that if
either MD2 or MD5 is used then the OID is just as in PKCS #1 v1.5. For each OID, the
parameters  field associated with this OID in an AlgorithmIdentifier  shall have
type NULL.

If the hash function to be used is MD2, then the OID should be:

md2WithRSAEncryption ::= {pkcs-1 2}

If the hash function to be used is MD5, then the OID should be:

md5WithRSAEncryption ::= {pkcs-1 4}

If the hash function to be used is SHA-1, then the OID should be:

sha1WithRSAEncryption ::= {pkcs-1 5}

A.2.4 RSASSA-PSS

The object identifier id-RSASSA-PSS  identifies the RSASSA-PSS encryption scheme.

id-RSASSA-PSS OBJECT IDENTIFIER ::= {pkcs-1 10}

The parameters  field associated with this OID in an AlgorithmIdentifier  shall
have type RSASSA-PSS-params:
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RSASSA-PSS-params ::=  SEQUENCE {
  hashFunc [0] AlgorithmIdentifier {{oaepDigestAlgorithms}}
    DEFAULT sha1Identifier,
  maskGenFunc [1] AlgorithmIdentifier {{pkcs1MGFAlgorithms}}
    DEFAULT mgf1SHA1Identifier,
  salt OCTET STRING OPTIONAL }

The fields of type RSASSA-PSS-params  have the following meanings:

• hashFunc  identifies the hash function. It shall be an algorithm ID with an OID in the
set oaepDigestAlgorithms  (see Appendix A.2.1). The default hash function is
SHA-1.

• maskGenFunc  identifies the mask generation function. It shall be an algorithm ID
with an OID in the set pkcs1MGFAlgorithms  (see Appendix A.2.1). The default
mask generation function is MGF1 with SHA-1.

• salt  is the salt value associated with the signature operation. The field is intended to
facilitate single-pass processing (see Section 8.2). If the field is omitted, the salt value
shall be obtained from the signature.

If the default value of the hashFunc  and maskGenFunc  fields of RSASSA-PSS-
params  are used and the seed  field is omitted, then the algorithm identifier will have the
following value:

RSASSA-PSS-Default-Identifier ::= AlgorithmIdentifier {
  id-RSASSA-PSS,
  { sha1Identifier, mgf1SHA1Identifier } }

Note. In some applications, the hash function underlying a signature scheme is identified separately from
the signature scheme itself. For instance, in PKCS #7 [28] and S/MIME CMS [18], a hash algorithm
identifier is placed before the message and a signature algorithm identifier is placed after it. To enable
single-pass processing for RSASSA-PSS in such applications, the hash algorithm identifier should
contain the salt value (in which case the signature algorithm identifier does not need to contain it).
Accordingly, the object identifier id-salted-hash  is provided to specify a salt value as well as a
hash function:

id-salted-hash ::= {pkcs-1 11}

The parameters  field associated with this OID in an AlgorithmIdentifier  shall have type
Salted-Hash_Params:

Salted-Hash-Params ::= SEQUENCE {
  hashFunc [0] AlgorithmIdentifier,
  salt OCTET STRING OPTIONAL }

The field hashFunc  identifies the underlying hash function and the field salt  is the salt value.
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PSS can thus be supported in PKCS #7 and S/MIME CMS, by specifying id-salted-hash  with the
salt value as the hash algorithm identifier and id-RSASSA-PSS  without the salt value as the signature
algorithm identifier.

In one mode of both PKCS #7 and S/MIME CMS, the hash function is applied twice, once to the message
and again to an attribute set that contains the hash of the message. The same hash function is applied in
each case. Consequently, if a salted hash function is specified then it should be applied with the same salt
both times. (This does not impact the security of the RSASSA-PSS scheme.)

(In new applications, it would be preferable to place the full signature algorithm identifier before the
message rather than a hash algorithm identifier, because it may not always be possible to separate a
signature algorithm from an underlying hash function.)

B. Supporting techniques

This section gives several examples of underlying functions supporting the encoding
methods in Sections 09. While these supporting techniques are appropriate for
applications to implement, none of them is required to be implemented. It is expected,
however, that profiles for PKCS #1 v2.0 will be developed that specify particular
supporting techniques.

This section also gives object identifiers for the supporting techniques.

B.1 Hash functions

Hash functions are used in the operations contained in Sections 7 and 8. Hash functions
are deterministic, meaning that the output is completely determined by the input. Hash
functions take octet strings of variable length, and generate fixed length octet strings. The
hash functions used in the operations contained in Sections 7 and 8 should generally be
collision resistant. This means that it is infeasible to find two distinct inputs to the hash
function that produce the same output. A collision resistant hash function also has the
desirable property of being one-way; this means that given an output, it is infeasible to find
an input whose hash is the specified output. The property of collision resistance is
especially desirable for RSASSA-PKCS1-v1_5, as it makes it infeasible to forge
signatures. For RSASSA-PSS, however, the property is less important, particularly if a
random salt value is employed. In addition to the requirements, the hash function should
yield a mask generation function (Appendix B.2) with pseudorandom output.

Three hash functions are recommended for the encoding methods in this document: MD2
[20], MD5 [24], and SHA-1 [22]. For the EME-OAEP and EMSA-PSS encoding
methods, only SHA-1 is recommended. For the EMSA-PKCS1-v1_5 encoding method,
SHA-1 is recommended for new applications. MD2 and MD5 are recommended only for
compatibility with existing applications based on PKCS #1 v1.5.

The hash functions themselves are not defined here; readers are referred to the appropriate
references ([20], [24] and [22]).
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The object identifiers id-sha1 , md2 and md5 identify the respective hash functions:

id -SHA1 OBJECT IDENTIFIER ::=
{iso(1) identified-organization(3) oiw(14) secsig(3)

algorithms(2) 26 }

md2 OBJECT IDENTIFIER ::=
{iso(1) member-body(2) us(840) rsadsi(113549)

digestAlgorithm(2) 2}

md5 OBJECT IDENTIFIER ::=
{iso(1) member-body(2) us(840) rsadsi(113549)

digestAlgorithm(2) 5}

The parameters  field associated with these OIDs in an AlgorithmIdentifier
shall have type NULL.

Note. Version 1.5 of this document also allowed for the use of MD4 in signature schemes. The
cryptanalysis of MD4 has progressed significantly in the intervening years. For example, Dobbertin [12]
demonstrated how to find collisions for MD4 and that the first two rounds of MD4 are not one-way [14].
Because of these results and others (e.g. [11]), MD4 is no longer recommended. There have also been
advances in the cryptanalysis of MD2 and MD5, although not enough to warrant removal from existing
applications. Rogier and Chauvaud [26] demonstrated how to find collisions in a modified version of
MD2. No one has demonstrated how to find collisions for the full MD5 algorithm, although partial results
have been found (e.g. [8]). For new applications, to address these concerns, SHA-1 is preferred.

B.2 Mask generation functions

A mask generation function takes an octet string of variable length and a desired output
length as input, and outputs an octet string of the desired length. There may be restrictions
on the length of the input and output octet strings, but such bounds are generally very
large. Mask generation functions are deterministic; the octet string output is completely
determined by the input octet string. The output of a mask generation function should be
pseudorandom, that is, if the seed to the function is unknown, it should be infeasible to
distinguish the output from a truly random string. The provable security of RSAES-OAEP
and RSASSA-PSS relies rely on the random nature of the output of the mask generation
function, which in turn relies on the random nature of the underlying hash.

One mask generation function is recommended for the encoding methods in this
document, and is defined here: MGF1, which is based on a hash function. Future versions
of this document may define other mask generation functions.

B.2.1 MGF1

MGF1 is a Mask Generation Function based on a hash function.

MGF1 (Z, l)
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Options: Hash hash function (hLen denotes the length in octets of the hash
function output)

Input: Z seed from which mask is generated, an octet string

l intended length in octets of the mask, at most 232 hLen

Output: mask mask, an octet string of length l

Error: “mask too long”

Steps:

1. If l >  232 hLen, output “mask too long” and stop.

2. Let T be the empty octet string.

3. For counter from 0 to  l / hLen –1, do the following:

a. Convert counter to an octet string C of length 4 with the primitive I2OSP:

C = I2OSP (counter, 4) .

b. Concatenate the hash of the seed Z and C to the octet string T:

T = T || Hash (Z || C) .

4. Output the leading l octets of T as the octet string mask.

The objecter identifier id-mgf1  identifies the MGF1 mask generation function:

id-mgf1 OBJECT IDENTIFIER ::= {pkcs-1 8}

The parameters  field associated with this OID in an AlgorithmIdentifier  shall
have type AlgorithmIdentifier , identifying the hash function on which MGF1 is
based.

C. ASN.1 module

[[to be added]]

D. Intellectual property considerations

The RSA public-key cryptosystem is protected by U.S. Patent 4,405,829. RSA Security
Inc. makes no other patent claims on the constructions described in this document,
although specific underlying techniques may be covered.
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The University of California has indicated that it has a patent pending on the PSS
signature scheme [4]. It has also provided a letter to the IEEE P1363 working group
stating that if the PSS signature scheme is included in an IEEE standard, “the University
of California will, when that standard is adopted, FREELY license any conforming
implementation of PSS as a technique for achieving a digital signature with appendix.”
[16].

License to copy this document is granted provided that it is identified as “RSA Security
Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document.

RSA Security Inc. makes no other representations regarding intellectual property claims
by other parties. Such determination is the responsibility of the user.

E. Revision history

Versions 1.0–1.3

Versions 1.0–1.3 were distributed to participants in RSA Data Security, Inc.’s Public-Key
Cryptography Standards meetings in February and March 1991.

Version 1.4

Version 1.4 was part of the June 3, 1991 initial public release of PKCS. Version 1.4 was
published as NIST/OSI Implementors’ Workshop document SEC-SIG-91-18.

Version 1.5

Version 1.5 incorporated several editorial changes, including updates to the references and
the addition of a revision history. The following substantive changes were made:

• Section 10: “MD4 with RSA” signature and verification processes were
added.

• Section 11: md4WithRSAEncryption  object identifier was added.

Version 2.0

Version 2.0 incorporated major editorial changes in terms of the document structure and
introduced the RSAEP-OAEP encryption scheme. This version continued to support the
encryption and signature processes in version 1.5, although the hash algorithm MD4 is no
longer allowed due to cryptanalytic advances in the intervening years. Version 2.0 was
also published as IETF RFC 2437 [22].

Version 2.1



PKCS #1 V2.1: RSA CRYPTOGRAPHY STANDARD 45

Copyright © 1999 RSA Security Inc.

Version 2.1 introduces the RSASSA-PSS signature scheme with appendix and
incorporates several editorial improvements. This version continues to support the
schemes in version 2.0.
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G. About PKCS

The Public-Key Cryptography Standards are specifications produced by RSA
Laboratories in cooperation with secure systems developers worldwide for the purpose of
accelerating the deployment of public-key cryptography. First published in 1991 as a result
of meetings with a small group of early adopters of public-key technology, the PKCS
documents have become widely referenced and implemented. Contributions from the
PKCS series have become part of many formal and de facto standards, including ANSI X9
documents, PKIX, SET, S/MIME, and SSL.

Further development of PKCS occurs through mailing list discussions and occasional
workshops, and suggestions for improvement are welcome. For more information,
contact:

PKCS Editor
RSA Laboratories
20 Crosby Drive
Bedford, MA  01730  USA
pkcs-editor@rsasecurity.com
http://www.rsasecurity.com/rsalabs/pkcs


